USB DBC Class Definition, v0.9rc5 8/31/99

Universal Serial Bus
Device Class Definition
for

Device Bay Controllers

0.9rc5 Draft Revision
August 31, 1999

USB DBC Class Definition, v0.9rc5

8/31/99

Scope of this Revision

The 0.8f revision reflects input from the founding members of the Class Working Group (see Contributors list below).
The structure of this specification is stable, new members are joining the Class Working Group, and the content is

being revised based on their feedback.

Contributors

John Dunn, Microsoft

Shaun Pierce, Microsoft

John Nels Fuller, Microsoft

Dan Shapiro, Microsoft

Jeff Stevens, Compag

Charlie Shaver, Compag

Chuck Stancil, Compaq

Paul Stanley, Compaq

Krunali Patel, Texas Instruments
George Soler, Microsoft

Paul Brant, SMSC

Steve Chang, KC Technology
Sue Vining, Texas Instruments
Jeff Enoch, Texas Instruments
Bryce Leach, Texas Instruments
Grant Ley, Texas Instruments
David Wooten, Compaq

Mark Williams, Microsoft

Clint Hanson, Granite Microsystems
E-mail: Paul.Brant@smsc.com

Revision History

Revision Date; Filename | Author Description
0.5 7/28/97 John Dunn Base version
0.51a 8/2/97 Added usages for 1394, 1394/USB
port mappings and power controls.
0.60 11/10/97 Dan Shapiro Removed references to HID
Shaun Pierce
0.61 12/18/97,; John Dunn, Added class-specific requests,
Dbcclasl.doc Shaun Pierce, edited descriptors, put into format
Mark Williams expected by USB DWG.
0.62 12/19/97,; John Dunn, Mark | Added “Notification Thru Interrupt
Dbcclas2.doc Williams Pipe” section.
0.62a 12/23/97,; Jeff Stevens Added DBC GUID, Bay x Port
Dbcclas2a.doc Mapping, and Power Capabilities
descriptors
0.62b 1/6/98 ; Jeff Stevens Added PHY reg’s and corrected
Dbcclas2b.doc Dan Shapiro power descriptors from Charlie’s
Charlie Shaver comments.
Merged w/ Dan Shapiro’s
comments
0.62x 1/11/98; John Dunn Eliminated requests to write to DBC
Dbccls2x.doc Mark Williams GUID register, Bay x Port Mapping
Register, and Device Bay Power
Capabilities Registers because
these are read-only registers.
Added requests the read and write
the PHY control register.
Moved definition of 1394 Config
ROM content that DBC must
support back into the Device Bay
Spec.

USB DBC Class Definition, v0.9rc5

8/31/99

Moved Task Sequence Tables for
USB-based DBC from Device Bay
Spec to this spec and updated
Sequence Table content with
specific requests defined in this
spec.

0.70

1/24/98

Jeff Stevens
Charlie Shaver
Chuck Stancil
John Dunn
Mark Williams

Made changes to make it clear DBC
is self-powered USB function and
not self-powered.

Added Section 6 to include all
requirements for USB-based DBC
for one of its functions, which is to
emulate a 1394 Link layer for its
associated PHY.

Added Section 7, informative
appendix that shows a minimal Link
controller implementation in a DBC.
Added Section 8, informative
appendix that shows an example
implementation of a minimal
Configuration ROM space in a DBC.
Added vendor-specific requests
mechanism.

Reinstated Write CGUIDR and
Write BPMRXx requests; added
constraint to Write DBCCR, Write
CGUIDR, Write BPMRXx, and Write
DBPCRXx requests.

Walked through first draft of Task
Sequence Tables and revised as
necessary.

0.7a

2/3/98

John Dunn
Mark Williams

Incorporated feedback from USB
DWG breakout session in Atlanta;
most of the changes are in section 5
and in the Task Sequence Table
appendix.

0.8

2/24/98

John Dunn
Mark Williams

Incorporated feedback from all e-
mail received from attendees at
USB DWG breakout session in
Atlanta

0.8a

2/25/98

John Dunn
George Soler
Mark Williams

Rewrote “Management Overview”
section to better describe
relationship between the hub and
the permanently attached DBC,;
moved static Form Factor fields
from status bit-map to Bay
Descriptor; redefined status bit-map
fields; changed illustrations to show
remote Device Bay application;
reformatted Task Sequence Tables.

0.8b, c,and d

3/10/98

John Dunn
Mark Williams
George Soler

Miscellaneous edits based on
feedback

0.8e

3/12/98

Mark Williams
Jeff Stevens

A few edits based on feedback

USB DBC Class Definition, v0.9rc5

8/31/99

0.9rc 3/18/98 Mark Williams Edits requested by DBC Class
Device Working Group at f2f
meeting on Long Island, NY
0.9rcl 5/7/98 Mark Williams Edits requested on last day of DBC
Class Working Group at f2f meeting
on Long Island, NY
0.9rc2 5/27/98 Mark Williams Added Get Bay Descriptor and Get
John Dunn Subsystem Descriptor class-specific
requests in response to Sue
Vining’s e-mail; moved feature
requests from section 5.4 to section
5.3; resolved “Note to Reviewers”
undone items that were brought up
at f2f meeting on Long Island, NY
0.8f 6/17/98 Mark Williams Bay subsystem wakup event
John Dunn changes. Removed USB Device
Jeffrey Stevens wakup events section. Minor
Chuck Stancil clarifications and typo’s. Modified
Paul Brant disclaimer information
0.9rc3 8/3/98 John Dunn Consolidated diagrames. Added
Jeffrey Stevens diagrams to clarify DBC USB Hub
Chuck Stancil implementations. Added Examples.;
Paul Brant Changed Subsystem Descriptor
Grant Ley Power length fields; Removed
requirement got 1394 phy to
generate interrupt conditions;
0.9rc4 8/20/98 Paul Brant Modify Subsystem Descriptor — Add
Chuck Stancil programable Device Debounce time
before setting DEVSTSCHG bit +
transitioning to Device Inserted
state.
Define additional state in the Bay
Status Bit-map - Device De-bounce.
0.9rc5 8/31/1999 Paul Brant Fixed subsystem desc. Offsets
John Dunn Added ENABLE_VOP_POWER
Grant Ley value to the Set Feature request
Chuck Stancil Added additional state transition

“De-bounce” to the Section 9
Appendix

Changed USB-Based DBC Insertion
flow chart to table format

USB DBC Class Definition, v0.9rc5 8/31/99

USB Device Class Definition for Device Bay Controllers
Copyright © 1997, 1998, 1999 USB Implementers Forum
All rights reserved.
INTELLECTUAL PROPERTY DISCLAIMER
THIS SPECIFICATION IS PROVIDED “AS IS” WITH NO WARRANTIES WHATSOEVER INCLUDING
ANY WARRANTY OF MERCHANTABILITY, FITNESS FOR ANY PARTICULAR PURPOSE, OR ANY
WARRANTY OTHERWISE ARISING OUT OF ANY PROPOSAL, SPECIFICATION, OR SAMPLE.
A LICENSE IS HEREBY GRANTED TO REPRODUCE AND DISTRIBUTE THIS. NO OTHER LICENSE,
EXPRESS OR IMPLIED, BY ESTOPPEL OR
OTHERWISE, TO ANY OTHER INTELLECTUAL PROPERTY RIGHTS IS GRANTED OR INTENDED
HEREBY.

AUTHORS OF THIS SPECIFICATION DISCLAIM ALL LIABILITY, INCLUDING LIABILITY FOR
INFRINGEMENT OF PROPRIETARY RIGHTS, RELATING TO IMPLEMENTATION OF
INFORMATION IN THIS SPECIFICATION. AUTHORS OF THIS SPECIFICATION ALSO DO NOT
WARRANT OR REPRESENT THAT SUCH IMPLEMENTATION(S) WILL NOT INFRINGE SUCH

RIGHTS.
All product names are trademarks, registered trademarks, or service marks of their respective owners.

Please send comments via electronic mail to usbdevice@mailbag.intel.com

USB DBC Class Definition, v0.9rc5 8/31/99

Table of Contents

1

FgLuolo [FTox i o] DT TP TP PP TP 8
O S oo o =TT TP P PR PR PRPURRURRORIN 8
T U010 T O PP U TR PR 8
1.3 RGO DOCUMENLSeoitieiteeiteesteestee st st sttt sb e st sb e sr e sb e st e e s b e e sbeesbeesbeesbeesbeesbeenreesreenreenreens 8

MENAGEMENE OVEIVIEWW ..ottt ettt ettt ettt et e e s bt e e be e e abe e e sbbe e sabeesabeeabeeeabeeesabeesnbeesnbeeeanes 9
2.1 Device Bay Subsystem Architecture Containing a USB DBC FUNCtion............cccoceeeieeeneeenenen. 9
2.2 Hub and DBC Power Distribution and Power SWitching ... 13

221 POWES DiStIIDULION. ...t 13

222 POWEN SIWITCNING ..ttt ettt e b e e e sbe e e sane s 13

223 Bay Subsystem Wakeup BVENES ... 13

FUNCEI 0Nl CharaCteriStiCS. .. .cveeiteeiieeieeeit ettt 14
3.1 Notification Through the INtErTUPL PIPEoo it 14
3.2 1394 LinK REQUITEIMENTSoieiiiiiiieitie ettt ettt ettt et e et e e sbe e e sbe e e sabe e smbe e snbeeenees 15

(DS o] o 0] £ J PR TOURPRURRR 16
R B = Y oy B L= vl | o (o TR TUURRUSR 16

411 Class-SPeCifiC DEVICE DESCIIPLONcoiueeeieieeiieeeiee et ettt e sbe e seee e seee e sabe e s be e e 16

4111 SUDSYSEEM DESCIIPLONcceveiiteieiteee st e stee st ste e steeesabe e s be e e sbee e saee e sabeesmbeeasbeeesaneesnneaaas 16
I R =¥ VA B 1= o] o (o TSP TTOURTOURRRIN 17

41.2 Standard DeViCe DESCIIIONveiiieiaiiee ittt ettt e et e e sbee e sane e sabe e s beeeees 18
4.2 CoNfigUIration DESCIIPLONciiiteieitiee e iteeetee ettt ettt e et e e sae e e sabe e sbe e s be e e sbee e sneeesnreaans 20

421 Class-Specific Configuration DESCIIPLONeeiieiiiiieiie et 20

422 Standard Configuration DESCIIPLOLcoiuuieiiee ettt ettt see e seae e e ee e e 20
G B 1 01 = g = e sl DTS o] o o TP TUU SRS 20

431 Class-Specific INterface DESCIIPLONeviieiieiiee ettt 20

432 Standard INterface DESCIIPLON......cciveiiie ettt sa e s ae e e e 20
4.4 ENAPOINE DESCIIPLONtiiiteietiee et e stie e st e bt e e stee e saeeesabe e s beeebeeaabeeeaaseessbeesmbeesbeeaaseeesnneesnrensns 22

441 Class-Specific ENAPOINt DESCIIPLONceeiurieiieeiieeeiee ettt et e st e siee e saee e sese e saaeeseeeeees 22

442 Standard ENAPOint DESCITPLONS. ...c.uveiaieieitiee st siee ettt sbe e seee e seee e sabe e sbeeeees 22

4421 Control ENApoint DESCIIPLOLcccuuieiuiieiieeitee et siieesteeete e stee e saee e sabeesbeessbeeesaeeesneeaeas 22
4.4.2.2 Interrupt ENAPOint DESCIILON.......eiiiiieiiieitee ettt et 22

REQUESES....... ettt ettt e et e e e e a b et e e s b e e e e e et ee e e e R Ee e e e e bbe e e e aabre e e e nree e e anreae s 23
LT RS 7= 0o = o [= o 1= £ T RPN 23
5.2 Vendor-SPetifiC REGUESES.ooiiiiiiii ettt sb e sae e sabe e b e be e ees 23
5.3 Class-SPECITiC REQUESES.......coiiiiiiiiitii ettt ettt e st e e sbe e saee e sabe e s mbe e sbeeeees 23

531 GEL BaAY SEAIUS.....cveeteeteesteeste ettt ettt ettt et b e bbbt bt bbb b e r e e n e e r e e ne e ne e 24

532 GELPHY REJISIENeiiiieitieite ettt n e e e 25

533 SELPHY REGISIEN ...ttt e e 25

534 FEALUINE REQUESES........eeieieeiee ettt st e e e bt e e e s s b e e e e s amb e e e e snre e e e anneas 26

5341 SELFEAIUN.eeiieeeitee ittt et bbbt b e b e e sr e b b e nr e e reenreenreen 26
5.3.4.2 ClEAI FEAIUIE......eeiieiiee sttt ettt r e bt s b e b e e sb e sb e e s reesneenreenneenreen 26
5.3.4.3 Feature SEECIOr VAIUES........cocuiiiiieiteeiiee ettt ettt sr et sr e nreennee 26

APPENAIX (NOFMELIVE) ...ttt ettt ettt ettt sae e et e e s be e e abe e e eaee e sabeesabeeeabeeesabeesareeaas 28
6.1 Reporting PHY INterrupt CONTItIONS........coiiiieiiieiiie ettt 28
6.2 Providing LiNK LAyEr SEIVICES.......ciiiiiiitiie ettt ettt ettt ettt e sbe e see e sab e be e s beeeees 28
6.3 Providing 1394 CSR Space and Configuration ROMccciiiiiiiieiinineee e 28

6.3.1 CSR SPBCE ...ttt 29

6.3.2 Providing Configuration ROMcoiiiiiiiiiii et be e s 29

APPENAIX (INFOFMELIVE)ceeeieitii ettt sa ettt e e sbe e e sbee e sabe e sabeeesbe e e aneeesabeeans 32
7.1 Minimal Link Controller Transaction Capabilitycccouiriiiiiiiiiiie e 32
7.2 A394 PACKELS......eoiietiee et 32

721 RECAIVING PACKELS......co ittt b e e sbe e saee s 32

722 GENENAiNG PaCKELS......couiie ettt rb ettt s b e e 33
S T = 1Y oo L= TSR 33
A = 11 S T TSP R TR PR P PPN 33

USB DBC Class Definition, v0.9rc5 8/31/99

AT R == o001 < 0o o L= TR 33
7.6 ACKNOWIEAGE COUBS......coo ittt ettt ettt ettt st e b e e sbe e e sbee e sabe e sabeesbeeeees 33
7.7 PhYSICEl INTEITACE. ...ttt sb et e st e b e e 34
7.8 AJAItIONal FEAIUIES.ooitieiietiete ettt 34
8 ApPendixX (INFOMMELIVE)oeieiieiiie ettt ettt saee et e e st e e e ebe e e sbee e sabe e snreeenees 35
8.1 Example DBC Configuration ROMcoociiiiiiiiiiiiie et siee st 35
9 APPENIX (INFOMMEBLIVE)veiieiee ittt ettt ettt e sae e e st e e st e e e ebe e e sbee e smbeesnbeeenees 36
10 APPENAIX (INFOFMELIVE)..... . eeiieeeeieie ettt ettt sbe e ate e be e be e e be e e saee e saneesnreaaas 37
10.1 DeViCe INSEItiON SCONBIO. ... eeiueiiueiieeirtiesiee sttt sttt sar e n e 37
10.2 Button-Initiated Device REMOVEl SCENAIIOoiviiiiiiiiieiie et 64

USB DBC Class Definition, v0.9rc5 8/31/99

1 Introduction

1.1 Scope

The Universal Serial Bus Device Class Definition for Device Bay Controllers (this specification) appliesto all
implementations of a Device Bay Controller (DBC) that communicate with the system using USB. Any DBC that
appears as a USB device or sends its control signals across USB must comply with this specification in order to be
Device Bay-compliant.

The Universal Serial Bus Device Class Definition for Device Bay Controllers does not apply to DBCs that interface to
the system through the Advanced Control and Power Interface (ACPI). For more information about ACPI-based
DBCs, see the Device Bay Specification.

In case of aconflict between this document and the Device Bay Specification, the Device Bay Specification shall have
precedence.

1.2 Purpose

The purpose of this document is to describe the minimum capabilities and characteristics that a USB-based Device Bay
Controller device must possess. This document also provides recommendations for optional features.

1.3 Related Documents

Universal Serial Bus Specification, revision 1.1 (also referred to as the USB Specification). In particular, see
Chapter 9, “USB Device Framework”. See www.ush.org/developers/

Device Bay Interface Specification, Revision 0.85, or later.

IEEE 1394 -1995 or later Terms and Abbreviations
Thls section defines terms used throughout this document. For additional terms that pertain to the Universal Serial Bus,
see Chapter 2, “Terms and Abbreviations,” in the USB Specification and “Definitions of Terms” in section 1 of the
Device Bay Interface Specification.

Device Bay subsystem
One or more Device Bay compliant bays controlled by a single Device Bay Controller.
Device Bay hub
An USB hub which provides the USB port connectivity for the USB Device Bay Controller and the bays

USB DBC Class Definition, v0.9rc5 8/31/99

2 Management Overview
Every Device Bay subsystem requires one DBC.

A USB DBC must:
Manage device insertion events.
Manage device removal events.
Associate inserted devices with downstream ports on its hub.
Manage staged power consumption by the inserted devices.

This specification defines a DBC that is a USB function. The USB Core Specification defines a function as a device
that is able to transmit or receive data or control information over the USB bus.

2.1 Device Bay Subsystem Architecture Containing a USB DBC
Function
A DBC function uses USB to interface with the host.

The DBC and the bays it controls are all attached to ports on the same hub. Other ports on the hub can have other uses;
for example, other ports on the hub can provide walk-up connectors for other USB devices, as shown in Figure 2.1.

PCI
—— USB Root Controller 1394 Link Controller
Walk-up
Port
PHY/Link
Interface Walk-up
| Port
1394 PHY Walk-up
Port
0 4
4 PHY/Link
USB Hub Controller DBC Interface 1394 PHY
11 2 3 11 2| 3
Walk-up Walk-up
Port Port
Device Bay 1
Device Bay 2
Device Bay
Subsystem ~~ —

USB DBC Class Definition, v0.9rc5 8/31/99

Figure 2-1. Remote Device Bay Ar chitecture Showing Relationships Between USB Hub, DBC, 1394 PHY Link
Interface and Bays
NOTE: Port numbers were arbitrarily assigned for use as with and example Bay Descriptor (See Descriptors chapter)

A DBC function is permanently attached to a port on a USB hub. A DBC function may be integrated in the same
physical package as the hub, but is not required.

The Device Bay hub is the hub directly upstream from the Device Bay Controller and Device Bay USB ports.
Examples of a correct and incorrect implementation of the Device Bay hub areillustrated in Figure 2-2 and 2-3.

10

USB DBC Class Definition, v0.9rc5 8/31/99

From Upstream
Root Controller

USB Device Bay Hub

USB Down Stream
Connection

Device Bay Controller

ﬁevice Bay Control Signals

USB Down Stream Connection to Device Bay Port

Valid
Configuration

Device Bay Connector

>

Figure 2-2. Example of a Valid Remote Device Bay Ar chitecture Showing Relationships Between
USB Hub, DBC, and Device Bay Connector

11

USB DBC Class Definition, v0.9rc5 8/31/99

From Upstream Root
Controller

USB Device Bay Hub

USB Down Stream
Connection

Added USB Hub

UsSB

Device Bay Controller

USB Down Stream Connection to Device Bay Port

Device Bay Control Signals

In-valid
Configuration

N

Figure 2-3. Example of an Invalid Remote Device Bay Ar chitecture Showing Relationships Between
USB Hub, DBC, and Device Bay Connector

Device Bay Connector

12

USB DBC Class Definition, v0.9rc5 8/31/99

2.2 Hub and DBC Power Distribution and Power Switching

This section specifies the rules for power distribution to the hub and permanently attached DBC function, aswell as
the rules for port power switching on the hub.

2.2.1 Power Distribution

The DBC function is permanently attached to a hub.

The hub must be a“hybrid” powered device (as defined in sections 7.2.1.2 and 7.2.1.5 of thev1.1 USB
Specification) or a self-powered device. A hybrid-powered hub has the advantage that communication from the
host is possible even if the remote Device Bay power supply is off and is strongly recommended.

The DBC function can be bus-powered or self-powered. Note that if the DBC is bus-powered, it must be able to
operate with 500uA of current when the hub is suspended.

The DBC controls Vid to the device bay and may optionally control Vop.

2.2.2 Power Switching

It is recommended that the hub have port power switching for its downstream ports. An implementation may use
individual port power switching or ganged power switching. For more information, see section 11.7 of thev1.1 USB
Specification. Note that a hub port must be powered on in order to perform connect detection from the downstream
direction.

It is recommended that individual port power switching be used on a hub with ports that are attached to aDBC
and one or more bays. The power-switching mode of a port is specified in the wHubCharacteristics field of the
Hub Descriptor (for more information, see section 11.11.2.1 of the v1.1 USB Specification).

If gang-switching is used, the PortPwrCtrIMask field of the Hub Descriptor must be used to mask all the ports
attached to a DBC or bay from the effects of a gang-mode power control request.

Note that implementing either of these power switching modes on the hub enables one or more of the hub ports to
provide awalk-up connector for a hot-plugged low-power or self-powered USB device.

Note to reviewers. a section will be added to the Device Bay Specification that defines a power descriptor for USB
devices that are designed to be inserted into Device Bay bays.

2.2.3 Bay Subsystem Wakeup Events

For suspend, resume, and remote wakeup, the DBC is no different than any other USB device and must comply with
the USB Core Specification requirements.

When enabled, the events at the bay subsystem that can be detected by the DBC and that cause the DBC to generate a
USB wakeup event (that is, to drive resume signaling on its upstream USB port):

When the DBC detects a device insertion event at the bay subsystem it controls, it must drive resume signaling on
its upstream port.

When the DBC detects a device removal request it must drive resume signaling on its upstream port when enabled
viathe REMOVE_REQUEST_ENABLE feature selector.

When the DBC detects a device removal event at the bay subsystem it controls, it must drive resume signaling on
its upstream port.

USB resume is enabled by the remote wakeup feature of the device status word. See chapter 9 of the USB 1.1
specification for additional information.

13

USB DBC Class Definition, v0.9rc5 8/31/99

3 Functional Characteristics

Software running on the Host System to which the DBC is attached, uses the default control pipe to read and write
Device Bay subsystem capabilities, status, and control information.

An interrupt pipe is required to enable the Device Bay subsystem to deliver information to the host about
asynchronous, infrequent device insertion and removal request events (and, optionally, a vendor-specific natification).

3.1 Notification Through the Interrupt Pipe

Software running on the host is notified of an insertion and removal event when it receives a bit-map through the IN
interrupt pipe. The only information contained in the event natification bit-map is an indication of the bay where the
event occurred. One bit is set in the bit-map for each bay that has a pending interrupt:

If bit O is set, the event is a vendor specific event
If bit 1 is set, the event occurred at bay number 1
If bit 2 is set, the event occurred at bay number 2
If bit 3 is set, the event occurred at bay number 3
and so on.

Note: Please refer to section 5.2 for additional information about vendor specific events.

The DBC must assert the notification until the host acknowledgesit. The host software acknowledges the notification
by using the appropriate Clear Feature request.

If host software determines the cause of the notification was a device status change, then the bRequest field of the
Clear Feature must be set to C_ DEVICE_STATUS CHANGE.

If host software determines the cause of the notification was the pressing of the removal request button, then the
bRequest field of the Clear Feature request must be set to C REMOVE_REQUEST

Host software gets the information it needs to determine the cause of the notification by using a Get Status request with

the bRequest field set to BAY_STATUS. The windex field of the Get Status request is set to the number of the bay that
was indicated in the bit-map on the Interrupt pipe. Baysin a Device Bay subsystem are numbered from 1 to n.

14

USB DBC Class Definition, v0.9rc5 8/31/99

3.2 1394 Link Requirements

A USB-based DBC must have a 1394 Link/PHY interface and smple Link controller functionality (the relationship
between the USB-based DBC and its associated PHY is shown in the architecture diagram shown in Figure 2-1.
More specificaly, a USB-based DBC must

Provide Link layer services; that is, handle the request, indication, response, and confirmation service primitives
described in section 3.6.1 of the IEEE Std 1394-1995 specification.

Provide 1394 CSR space and Configuration ROM.

For more information about the minimal requirements see section 6 of this specification.

15

USB DBC Class Definition, v0.9rc5 8/31/99

4 Descriptors

This section describes the standard and class-specific USB descriptors for the Device Bay Controller class.

4.1 Device Descriptor

4.1.1 Class-Specific Device Descriptor

The class-specific device descriptors for aDBC Class device are:
Subsystem Descriptor
Bay Descriptor

The Subsystem Descriptor and Bay Descriptor must be returned after the Interface Descriptor and before the Endpoint
Descriptors for the DBC device.

Example:

1. Config_Descriptor
Interface_descriptor
Subsystem_descriptor (class)
Bay1_descriptor
Bay2_descriptor

I._?;éyn_deﬂ:ri ptor
Endpoint_descriptor

4.1.1.1Subsystem Descriptor

The Subsystem Descriptor contains:
- The number of baysin the subsystem.
Whether or not any bays in the subsystem implement a physical security lock.
The unique identifier of the 1394 PHY for which the DBC is providing 1394 Link services.
The power capabilities of the subsystem.
The USB DBC Class specification version to which the subsystem complies.
The Device Debounce state timeout value
Whether VOP switching support is provided for one or more bays

Table4-1. Subsystem Descriptor

Offset Field Size Value Description

0 bLength 1 Number Size of this descriptor, in bytes (must be at
least 0x30).

1 bDescriptor Type 1 Constant SUBSY STEM descriptor type (must be 0x40).

2 bmAttributes 4 Bit Map Attributes of the Device Bay Subsystem

controlled by the DBC.
D 31...D12: Reserved, must be 0

D 11...D8: The amount of time that the
DBC waits in the Device Debounce state
before setting the DEV STSCHG bit and
transitioning to the Device Inserted

state. The value in thisfield represents the
de-bounce timein 0.5 second

increments. A value of 0000b represents a
debounce time of 0.5 seconds. A vaue of
1111b represents a debounce time of 8.0
seconds.

D5: VOP switching support.
0= No VOP switching support is

16

USB DBC Class Definition, v0.9rc5 8/31/99

provided in this subsystem.
1= VOP switching support is
provided in this subsystem.
D 4: Physical security lock support.
0= No physical security locks
in this subsystem
1= Atleast onebay inthe
susbsystem has a
physical security lock.
D 3..0: The number of baysin the
Subsystem.

dw1394LinkGUID 8 Number Contains the 64-bit GUID (in big endian
format) of the 1394 PHY for which the DBC
is providing Link services.

14

dw3_3ContinuousPower 4 Number Total amount of continuous power, at 3.3V,
available to the susbsystem. Measured in
milliwatts. For a definition of the continuous
power measurement, see the Device Bay

Specification.

18

dw3_3PeakPower 4 Number Total amount of peak power, at 3.3V,
available to the subsystem. Measured in
milliwatts. For adefinition of the peak power
measurement, see the Device Bay
Specification.

22

dw5_0ContinuousPower 4 Number Total amount of continuous power, at 5.0V,
available to the subsystem. Measured in
milliwatts.

26

dws_OPeakPower 4 Number Total amount of peak power, at 5.0V,
available to the subsystem. Measured in
milliwatts.

30

dw12_0ContinuousPower 4 Number Total amount of continuous power, a 12.0V,
available to the subsystem. Measured in
milliwatts.

dw12_OPeakPower 4 Number Total amount of peak power, at 12.0V,
available to the subsystem. Measured in
milliwatts.

38

dwaggr egatePower 4 Number The total aggregate power available to the
subsystem. Measured in Waitts. For a
definition of total aggregate power, see the
Device Bay specification.

42

dwthermal Dissipation 4 Number The total amount of heat that can be removed
from the subsystem. Measured in Waitts.

46

bedSpecificationRelease 2 BCD The USB DBC Class specification release to
which the subsystem complies (assigned by
vendor).

4.1.1.2 Bay Descriptor
There is one Bay Descriptor for each bay in the subsystem.

A Bay Descriptor contains

A unique identifier for the bay within the subsystem (1, 2, 3, and so on). Seeillustration below.
The 1394 port to which the bay is connected (see illustration below).
The USB hub port to which the bay is connected (seeillustration below).

The form factor of the bay
Table4-2. Bay Descriptor

Offset Field Size Value Description

0 bLength 1 Number Size of this descriptor, in bytes (must
be 0x6).

1 bDescriptor Type 1 Constant BAY descriptor type (must be 0x41).

2 bBayNumber 1 Byte The unique identifier for the bay
within the susbsystem (1, 2, 3, and so
on).

17

USB DBC Class Definition, v0.9rc5

8/31/99

bHubPortNumber

Byte

Identifies the USB hub port to which
the bay is connected.

bPHYPortNumber

Byte

Identifies the PHY port to which the
bay is connected.

bFormfactor

Bit Map

Form factor of the bay:
0x00=DB32
0x01=DB20
0x02=DB13

All other values reserved.

Figure 2-1 provides an illustration of an example bay subsystem configuration and how the Bay Descriptor fields are
used. The port assignments in the example arbitrarily chosen for use in the Bay Descriptors example below. For
example, referring to Figure 2-1, if Bay 1 isaDB32 form factor, then the Bay 1 Descriptor values would be

asfollows:

Offset Field Value
0 bLength 0x06
1 bDescriptor Type 0x41
2 bBayNumber 0x01
3 bHubPortNumber 0x03
4 bPHYPortNumber 0x01
5 bFormfactor 0x00

4.1.2 Standard Device Descriptor

The standard device descriptor for a DBC Class device must indicate that class information is to be found at the
interface level. Therefore, the bDeviceClass field of the standard device descriptor for a DBC Class device must
contain zero so that enumeration software looks down at the interface level to determine the Interface Class.

The bDeviceSubClass and bDeviceProtocol fields for aDBC Class device descriptor must be set to zero.

All other fields of the standard device descriptor must comply with the definitions in section 9.6.1 of the USB

Specification.

Table 4-3. Standard Device Descriptor

Offset Field Size Value Description

0 bLength 1 Number Size of this descriptor, in bytes (must
be 0x12).

1 bDescriptor Type 1 Constant DEVICE descriptor type (must be
0x01).

2 bcdUSB 2 BCD Identifies the version of the USB
Specification that the DBC and its
descriptors are compliant with.

4 bDeviceClass 1 Class Must be 0x00 for aDBC Class
device.

5 bDeviceSubclass 1 Subclass Must be 0x00 for aDBC Class
device.

6 bDeviceProtocol 1 Protocol Must be 0x00 for aDBC Class
device.

7 bMaxPacketSze0 1 Number Maximum packet size for endpoint
zero (only 8, 16, 32, or 64 are valid).

8 idVendor 2 Number Vendor ID (assigned by USB).

10 idProduct 2 Number Product ID (assigned by vendor).

12 bcdDevice 2 BCD Device release number (assigned by
vendor).

14 iManufacturer 1 Index Index of string descriptor describing
manufacturer.

15 iProduct 1 Index Index of string descriptor describing
product.

16 i Serial Number 1 Index Index of string describing the
device' s seria number.

17 bNumConfigurations 1 Number Number of possible configurations
(must be 0x01 for DBC Class device).

18

USB DBC Class Definition, v0.9rc5 8/31/99

19

USB DBC Class Definition, v0.9rc5 8/31/99

4.2 Configuration Descriptor

4.2.1 Class-Specific Configuration Descriptor

There is no class-specific configuration descriptor.

4.2.2 Standard Configuration Descriptor

A DBC Class device Configuration Descriptor isidentical to the standard configuration descriptor defined in section
9.6.2 of the USB Specification.

Table 4-4. Standard Configuration Descriptor

Offset Field Size Value Description

0 bLength 1 Number Size of this descriptor, in bytes (must
be 0x09).

1 bDescriptor Type 1 Constant CONFIGURATION descriptor type
(must be 0x02).

2 wTotalLength 2 Length The combined length of all

descriptors (configuration, interface,
endpoint, and class or vendor
specific) returned for this
configuration.

4 bNuminterfaces 1 Number Number of interfaces supported by
this configuration (must be 0x01 for
DBC Class device).

5 bConfigurationValue 1 Number Vaue to use as an argument for

SetConfiguration to select this
configuration.

6 iConfiguration 1 Index Index of string descriptor describing
this configuration.

7 bmAttributes 1 Bit Map D7: Bus Powered
D6: Self Powered

D5: Supports Wakeup

D4 - DO0: Reserved

For a DBC Class device, can be set to
0x60 (self-powered and supports
wakeup) or 0xAO (bus-powered and
supports wake-up).

8 maxPower 1 mA Maximum power consumption from
the bus when DBC is fully
operational (expressed in 2mA units).
This value cannot exceed 50
(100mA).

4.3 Interface Descriptor

4.3.1 Class-Specific Interface Descriptor

There is no class-specific interface descriptor.

4.3.2 Standard Interface Descriptor

A DBC Class device Interface Descriptor isidentical to the standard interface descriptor defined in section 9.6.3 of the
USB Specification.

Table 4-5. Standard I nterface Descriptor

Offset Field Size Value Description
0 bLength 1 Number Size of this descriptor, in bytes (must
be 0x09).

20

USB DBC Class Definition, v0.9rc5

8/31/99

1 bDescriptor Type

Constant

INTERFA CE descriptor type (must
be 0x04).

2 bl nterfaceNumber

Number

Zero-based value that identifies the
index in the array of concurrent
interfaces supported by this
configuration (must always be 0x00
for DBC Class devices).

3 bAlter nateSettings

Number

Value used to select alternate settings
(must always be 0x00 for DBC Class
devices).

4 bNumEndPoints

Number

Number of endpoints used by this
interface (must always be 0x01 for
DBC Class devices).

5 bInterfaceClass

Class

Interface class code (OxFF or TBD
value assigned by USB).

6 bInterfaceubClass

SubClass

Subclass code (must always be 0x00
for DBC Class devices).

7 bl nterfaceProtocol

Protocol

Protocol code (must always be 0x00
for DBC Class devices).

8 ilnterface

Index

Index of string descriptor describing
thisinterface.

21

USB DBC Class Definition, v0.9rc5 8/31/99

4.4 Endpoint Descriptor

4.4.1 Class-Specific Endpoint Descriptor

There is no class-specific endpoint descriptor.

4.4.2 Standard Endpoint Descriptors

4.4.2.1 Control Endpoint Descriptor

Since endpoint 0 is used as the DBC control endpoint, there is no dedicated standard control endpoint descriptor.

4.4.2.2 Interrupt Endpoint Descriptor

A DBC Class device must have an interrupt endpoint.
The descriptor for this endpoint isidentical to the standard endpoint descriptor defined in section 9.6.4 of the USB
Specification.

Table 4-6. Interrupt Endpoint Descriptor

Offset Field Size Value Description

0 bLength 1 Number Size of this descriptor, in bytes (must be
0x07).

1 bDescriptor Type 1 Constant ENDPOINT descriptor type (must be
0x05).

2 bEndpointAddress 1 Endpoint D7: Direction (1=IN)

D6 — D4: Reserved

D3 — DO: Endpoint number

Must be 0x81 for a DBC Class device
(an IN endpoint with an endpoint
number of 1).

3 bmAttributes 1 Bit Map D7 — D2: Reserved
D1 —DO: Transfer type (Interrupt = 11b)
Must be 0x03 for a DBC Class device.

4 wmaxPacketSze 2 Number Maximum packet size this endpoint is
capable of sending. For aDBC Class
device, this value depends on the
number of bays controlled by the
device:

if 1to 7 bays then 0x0001,

if 8to 15 bays then 0x0002,

if 16 to 23 bays then 0x0003,

and so on.

6 binterval 1 Number Interval for polling endpoint for data
transfers (expressed in milliseconds).
For a DBC Class device, the value of
this field must be 32 (0x20).

22

USB DBC Class Definition, v0.9rc5 8/31/99

5 Requests

This section specifies the reguests that the host can send to the DBC. The requests are listed in the
following summary table:

Table5-1. USB DBC Requests

Brequest Value Description

GET_STATUS 0 See Chapter 9 of the USB Specification and section 5.3.1 of this
specification.

CLEAR_FEATURE 1 See Chapter 9 of the USB Specification and sections 5.3.4.2 and 5.4.3 of

this specification.

Reserved for future use

wWIN

SET_FEATURE See Chapter 9 of the USB Specification and sections 5.3.4.1 and 5.4.3 of

this specification.

Reserved for future use

SET _ADDRESS See Chapter 9 of the USB Specification.

SET DESCRIPTOR See Chapter 9 of the USB Specification.

GET_CONFIGURATION See Chapter 9 of the USB Specification

4
5

GET_DESCRIPTOR 6 See Chapter 9 of the USB Specification.
7
8
9

SET _CONFIGURATION See Chapter 9 of the USB Specification.

GET_INTERFACE 10 See Chapter 9 of the USB Specification.
SET INTERFACE 11 See Chapter 9 of the USB Specification.
SYNCH_FRAME 12 See Chapter 9 of the USB Specification.
GET_PHY_REG 13 See section 5.3.2 of this specification.
SET PHY_ REG 14 See section 5.3.3 of this specification.

5.1 Standard Requests

The DBC Device Class supports the standard requests described in Chapter 9, “USB Device Framework,” of the USB
Specification, as shown in Table 5-1.

5.2 Vendor-Specific Requests

Examples of vendor-specific requests relevant to Device Bay subsystems are:
Over-current reporting.
Over-temperature reporting.
Asset tracking.
Security measures.

Vendor-specific requests may be implemented in at least two different ways:

The interrupt pipe required of all USB-based DBC implementations must be used to notify the host software of a
vendor-specific request. Bit O of the bit-map sent from the device to the host is reserved for this: if bit Oissetto 1,
the host software will recognize this as a vendor-specific request.

A second interrupt pipe may be added to the USB-based DBC that is dedicated to vendor-specific requests, which
are handled as specified in the Chapter 9 of the USB Core Specification.

For more information, see section 3.1, “Natification through the Interrupt Pipe.”

5.3 Class-Specific Requests

This section specifies the class-specific requests for aDBC. If the DBC device gets an invalid request from the host,
the device behavior is undefined; an invalid request can be handled by the device in whatever way is convenient for the
developer. For example, it is not required to STALL the control pipe when an invalid request is received; the device
can smply ignore the invalid request.

23

USB DBC Class Definition, v0.9rc5

8/31/99

5.3.1 Get Bay Status

The Get Bay Status request returns the following information about a particular bay:

Current state of the optional bay-mounted security lock.

Current state of the bay (empty, device debounce, device enabled, device inserted, removal request pending, or

device removal allowed).

Current state of the removal request button mounted on the bay.
Whether or not a USB deviceis currently inserted in the bay.
Whether or not a 1394 device is currently inserted in the bay.
Whether or not the status of adevice in the bay has changed.
Whether or not the software controlled interlock is currently engaged.

The state of the bay, as requested by the host.

Whether or not the hardware device removal request interrupt is currently enabled.
Whether or not the hardware device change event interrupt is currently enabled.
Whether or not the hardware device removal event interrupt is currently enabled.

BmReguestType bRequest wValue wlndex wL ength Data
10100001B GET_STATUS 0 Index of bay (1,2, | 3 Bit-map that
3, and so on) indicates the
current state of
the bay

The format of the bit-map returned by the DBC in response to a Get Status request from the host with wValue set to

BAY_STATUS s shown in the following table.

Table5-1. Bay Status Bit-map

Bits Description Comment
23-16 Reserved
15 Current state of the optional bay-mounted physical security The host can only read this bit.
lock:
0 = Physical security lock is either not
implemented on thisbay or itis
Implemented and currently disengaged.
1 = Physical security lock is engaged.
14-12 Current state of the bay: For more information about these
000 = Bay Empty device states, see section 6.6.6 of the
001 = Device Inserted Device Bay Specification. The host
010 = Device Enabled can only read this bit.
011 = Removal Requested
100 = Device Remova Allowed
101 = Device De-bounce
All other values are reserved.
11 Current state of the optional removal request button on thebay: | The host can read this bit and clear

0 = Removal request button is either not this bit.
implemented on thisbay or itis
implemented and currently cleared (any
presses of the button have been
acknowledged by the host).

1 = Removal request button has been
pressed and not yet acknowledged by
the host.

10 Current state of transitions on the device presence pinsin the The host can read this bit and clear

. this bit.

0 = Currently cleared (any transitions on For more information about the
either presence pin have been device presence pins, 1394PRSN#
acknowledged by the host. and USBPRSN#, see section 4.4.1.4

1 = A transition has occurred on one or of the Device Bay Specification.
both of the presence pins and has not
yet been acknowledged by the host.

9 Current state of the 1394 device presence pin in the bay: The host can only read this bit.

0= No 1394 device currently inserted in
the bay.

1=A 1394 deviceis currently inserted in

24

USB DBC Class Definition, v0.9rc5 8/31/99
the bay.
8 Current state of the USB device presence pin in the bay: The host can only read this bit.
0= No USB device currently inserted in
the bay.
1=A USB deviceiscurrently inserted in
the bay.
7 Current state of the software-controlled interlock:. The host can use Set Feature and
0 = Disengaged Clear Feature requests to engage and
1 = Engaged disengage the interlock. For more
information, see section 5.3.4.
6-4 Most recent bay state change request the DBC has received
from the host:
000 =Noop
001 = Request was for Device Inserted state
010 = Request was for Device Enabled state
011 = Request was for Removal Requested
100 = Request was for Device Removal
Allowed
3 Current state of the removal request event interrupt enable: The host can use Set Feature and
0 = Disabled Clear Feature requests to enable and
1 = Enabled disable this interrupt. For more
information, see section 5.3.4.
2 Current state of the device status change event interrupt enable: | The host can use Set Feature and
0 = Disabled Clear Feature requests to enable and
1=Enabled disable this interrupt. For more
information, see section 5.3.4.
1 Current state of the device removal wakeup interrupt enable: The host can use Set Feature and
0 = Disabled Clear Feature requests to enable and
1=Enabled disable this interrupt. For more
information, see section 5.3.4.
0 Current state of the Vid control bit: The host can use Set Feature and

0= Turn off Vid power.
1="Turn on Vid power.

Clear Feature requests to enable and
disable Vid power. For more
information, see section 5.3.4.

5.3.2 Get PHY Register

Host software uses this request to establish a consistent communication method between the Link and PHY .

The bmRequest Type field value specifies a Class-type request directed to an interface, with a data transfer direction of
deviceto host.

The windex field is set to indicate the PHY register to read from.

The wLength field is always set to 1 because data is always read one byte at atime from aPHY register.

BmReguestType bRequest wValue wlndex wL ength Data

10100001B GET_PHY_REG 0 The 4-bit 1 Contains the
address of byte of data
the PHY read from
register to the PHY
read from. register.

5.3.3 Set PHY Reqgister

The host uses this request, along with the Get PHY Register request,

The bmRequest Type field value specifies a Class-type request directed to an interface, with a data transfer direction of
host to device.

The windex field is set to indicate the PHY register to write to.

The wLength field is aways set to 1, because a byte of datais aways written to a PHY register.

25

USB DBC Class Definition, v0.9rc5 8/31/99

BmReguestType BRequest wValue wlndex wL ength Data
00100001B SET_PHY_REG 0 The 4-bit 1 Contains the
address of byte of datato
the PHY write to the PHY
register to register.
write to.

5.3.4 Feature Requests

The Get Bay Status request (specified in section 5.3.1) enables the host to read all the information it needs from the
DBC. Set Feature and Clear Feature requests enable the host to write information to the DBC.

5.3.4.1 Set Feature

The Set Feature requests available to host software are specified in this section. For alist of the feature selectors
(wValue field values) that can be used in a Set Feature request, see section 5.3.4.3.

BmReguestType bRequest wValue wlndex wL ength Data
00100001B SET_FEATURE Feature Index of Zero None
Selector bay (1, 2, 3,
and so on)

5.3.4.2 Clear Feature

The Clear Feature requests available to host software are specified in this section. For alist of the feature selectors
(wValue field values) that can be used in a Clear Feature request, see section 5.3.4.3.

BmReguestType BRequest wValue wlndex Wlength Data
00100001B CLEAR_FEATURE Feature Index of bay | Zero None
Selector (14,2,3,and
SO 0N)

5.3.4.3 Feature Selector Values
The valid values for the wWalue field in a Set Feature or Clear Feature request are listed in the following table.

Table5-2. wValue Valuesfor Set Feature

Feature Selector Recipient | Value | Set/Clear | Description
DEVICE_STATUS CHANGE _ENABLE Interface 0 Set/Clear | On the specified
bay, enables a

notification due to
adevice status
change event (for
more information,
See section 6.6.5
of the Device Bay
Specification).

26

USB DBC Class Definition, v0.9rc5

8/31/99

ENABLE_VID_POWER

Interface

Set/Clear

On the specified
bay, enables the
Vidrail for the
bay (for more
information, see
section 6.6.5 of
the Device Bay
Specification).

LOCK_CTL

Interface

Set/Clear

On the specified
bay, engages the
software
controlled
interlock
mechanism for the
bay (for more
information, see
section 6.6.5 of
the Device Bay
Specification).

REMOVAL_EVENT_WAKE_ENABLE

Interface

Set/Clear

On the specified
bay, enables a
notification due to
aremoval eventin
the bay (for more
information, see
section 6.6.5 of
the Device Bay
Specification).

REMOVE_REQUEST_ENABLE

Interface

Set/Clear

On the specified
bay, enables a
notification due to
ahardware
removal request.
For more
information, see
section 6.6.5 of
the Device Bay
specification.

REQUEST _DEVICE_INSERTED_STATE

Interface

Reguest to change
bay state to device
inserted.

REQUEST DEVICE_ENABLED_STATE

Interface

Reguest to change
the bay state to
device enabled.

REQUEST_REMOVAL_REQUESTED_STATE

Interface

Reguest to change
the bay state to
removal requested.

REQUEST_REMOVAL_ALLOWED_STATE

Interface

£ 2 8 £

Reguest to change
the bay state to
removal allowed.

27

USB DBC Class Definition, v0.9rc5

8/31/99

C DEVICE_STATUS_CHANGE

Interface

Clear

On the specified
bay,
acknowledges the
notification that
indicates the
device status has
changed (for more
information, see
section 6.6.4 of
the Device Bay
Specification).

C_REMOVE_REQUEST

Interface

10

Clear

On the specified
bay,
acknowledges the
notification that
indicates that the
removal request
button has been
pressed (for more
information, see
section 6.6.4 of
the Device Bay
Specification).

ENABLE_VOP_POWER

Interface

11

Set/Clear

On the specified
bay, enables the
Voprail for the
bay (for more
information, see
section 6.6.5 of
the Device Bay
Specification).

6 Appendix (Normative)

This normative appendix describes the minimal DBC Link controller, CSR space, and Configuration ROM

requirements. A USB-based DBC must

Provide Link layer services; that is, handle the request, indication, response, and confirmation service primitives

described in section 3.6.1 of the IEEE Std 1394-1995 specification.

Provide 1394 CSR space and Configuration ROM.

6.1 Reporting PHY Interrupt Conditions

A minima DBC is not required to report phy interrupt conditions.

6.2 Providing Link Layer Services

A USB-based DBC must handle the request, indication, response, and confirmation service primitives described in
section 3.6.1 of the |EEE Std 1394-1995 specification. Section 7 of this specification shows one way to implement the

minimal set of services that need to be provided by a USB-based DBC.

6.3 Providing 1394 CSR Space and Configuration ROM

The DBC must implement aminimal amount of control status register (CSR) space and Configuration ROM space to
be a 1394 transaction-capable node. This section specifies the CSR space and Configuration ROM space that must be

implemented.

28

USB DBC Class Definition, v0.9rc5 8/31/99

6.3.1 CSR Space

The CSR core registers that must be implemented in the DBC for the DBC to function as a transaction-capable node
arelisted in Table 6-1. The base address of the register space is FFFF FO00 0000,. The registers are listed by the byte
offset from the base address.

Table6-1. CSR Core Registers

Offset Register name Description

000046 STATE_CLEAR | Sets state and control information. For more information, see section
8.3.2.2.1 of the IEEE Std 1394-1995 specification.
The unit_depend field is not required for the DBC.
The lost bit must be implemented in the DBC. In acable
environment, the lost bit is not affected by a bus reset, but is set to
“1” during bus reset if a power reset or transition to the dead state
occurs (as defined in the CSR Architecture).
The dreq bit must be implemented in the DBC. The DBC isadave
device on the 1394 bus and will not originate 1394 transactions,
which means the dreq bit must be set to “1.” The dreq bit is
unaffected by a bus reset.
In the bus_depend field the DBC:
The only bit in the bus_depend field implemented in the DBC is
the gone bit.
The DBC is not cable-powered so does not implement the linkoff
bit. The linkoff bit is set to “0” in the DBC and must remain at
zero.
The DBC is not cycle-master capable and does not implement
the cmstr bit. The cmstr bit is set to “0” in the DBC and must

remain at zero.
00044¢ STATE_SET Sets STATE_CLEAR bits. For more information, see section 8.3.2.2.2 of
the IEEE Std 1394-1995 specification.
000846 NODE_IDS Specifies 16-bit node ID. For more information, see section 8.3.2.2.3 of

the |EEE Std 1394-1995 specification.
The DBC must not be used in a backplane environment. The
behavior of the DBC in a backplane environment will not be
specified.

000C5 RESET _START | Resets state for a node. For more information, see section 8.3.2.2.4 of the
|EEE Std 1394-1995 specification.

Note that

The SPLIT_TIMEOUT register is not implemented in DBC Link controller implementations in which the Link
controller isnot a requester on the 1394 bus. The definition of the SPLIT_TIMEOUT register in the ANSI/IEEE
Std 1212:1994 or 1SO/IEC 13213:1994 specification states that only a requester must implement the
SPLIT_TIMEOUT register if adevice isimplementing split transactions. 1f aDBC Link controller implements
requester capability and split transaction capability, then this DBC Link controller implementation must
implement the SPLIT_TIMEOUT register in accordance with the ANSI/IEEE Std 1212:1994 or ISO/IEC
13213:1994 specification.

The BUSY_TIMEOUT register is not implemented in aminimal DBC Link controller; otherwise, it is optional.
Because the BUSY_TIMEOUT register is not implemented, the DBC will not support retriesif using aminimal
Link controller implementation.

6.3.2 Providing Configuration ROM

The DBC must implement a Configuration ROM using the general ROM format. This section describes the parts of the
general ROM format that the DBC implements.

The general ROM format used by the DBC is shown in the following figure:

| info_length | crc_length | rom_crc_value

29

USB DBC Class Definition, v0.9rc5 8/31/99

(8) | (8) | (16)

bus info_block

root_directory

unit_directories

root & unit leaves

vendor_dependent_information

The Configuration ROM must contain abus_info_block, aroot directory, and a unit directory.

Note that:
- Currently, no vendor_dependent_information is defined for the Configuration ROM of the DBC.

The “root & unit leaves’ information must consist of the Node_Unique_ld leaf required by the root directory
structure. The unit_directory must contain entries that identify the DBC to the software.

Theinfo_length field must have a value greater than 1 and must specify how many quadiets are contained in the
bus_info_block data structure.

The crc_length field specifies how many quadlets are protected by the rom_crc_value. The minimum number for
crc_length isthe size of the bus_info_block, while the maximum value for crc_length is 255, which allows for a
maximum Configuration ROM size of 1024 bytes.

Therom crc_valueis calculated using the CRC-16 algorithm described in clause 8.1.5 of the CSR Architecture.

30

USB DBC Class Definition, v0.9rc5 8/31/99

For more information about the Bus_Info_Block, the Root_Directory, and the Unit_Directory, see the IEEE Std 1394-
1995 specification. Notes about these components of Configuration ROM space that are specific to the minimal DBC
Link controller are listed in Table 6-2.

Table 6-2. Noteson DBC Link Controller Configuration ROM Space Components

Configuration
ROM
Component

Notes for DBC Link Controller

Bus Info_Block

For afull description of the Bus Info_Block, see the CSR Architecture specification.
In the DBC Configuration ROM space:

The cmc bit must be zero.

Theisc bit must be zero.

The bmc bit must be zero.

The cyc_clk_acc field must be set to all ones.

The max_rec field of the DBC must be set to 0001 (4 bytes); thisis the only

value allowed in the DBC for the max_rec field.

Root_Directory

For afull description of the Root_Directory, see the CSR Architecture specification.

The Configuration ROM for the DBC must implement the general ROM format and

must have a Root_Directory. The Root_Directory must contain the following entries:
Module Vendor_Id, Node Capabilities, Node _Unique_ld, and Unit_Directory.

The DBC shall implement the 64, fix, Ist, spt, and drq bits.
The 64, fix, and Ist bits must be set to 1 in the DBC. These bits indicate that the
DBC uses a 64-hit fixed-addressing scheme and that the STATE_CLEAR.lost bit
is implemented.
The DBC sets the spt bit to “0” to indicate that the DBC does not implement the
SPLIT_TIMEOUT register.
The DBC must not initiate 1394 transactions and must set the drq bit to zero.

Unit_Directory

For afull description of the Root_Directory, see the CSR Architecture specification.
The Unit_Directory must contain the minimum amount of information necessary to
identify the DBC to the software. The Unit_Spec_ID entry and Unit_SW_Version
entry must be in the Unit_Directory.

The value to use for the DBC Unit _Spec ID is 0x00805F.

The 24-bit value for unit sw version is 0x010000.

An example implementation of a DBC Configuration ROM is shown in Section 8.

31

USB DBC Class Definition, v0.9rc5 8/31/99

7 Appendix (Informative)

This section details the minimal link controller behavior required for the DBC. Section 7.8 lists additional features that
may be added to a DBC link controller implementation for a design that must go beyond the minimal requirements.

7.1 Minimal Link Controller Transaction Capability

The minimal USB-based DBC Link controller must be a transaction-capable 1394 node.
The Link must participate in asynchronous transactions
The Link does not need to recognize isochronous transfers.

Section 8.3.1.2 of the IEEE Std 1394-1995 specification lists the requirements for a transaction-capable node.

The minimal Link controller is not required to implement the SPLIT_TIMEOUT register that is called out in
section 8.3.1.2 of the IEEE Std 1394-1995 specification.

The minimal Link controller is not required to support split transactions. If split transactions are not supported the
minimal Link controller must be able to respond to read requests using concatenated subactions and must respond
to write requests using a unified response.

In addition to the registers listed in the IEEE Std 1394-1995 specification, the Link controller also must have a
Configuration ROM in the general ROM format (for more information, see section 6 of this specification).

7.2 1394 Packets

The PHY attached to the DBC Link controller must pass 1394 packets to the minimal Link controller in the DBC. A
minimal Link controller must recognize only two types of packets from the 1394 bus and must generate only one type
of packet to the 1394 bus.

7.2.1 Receiving Packets

The DBC Link controller must ignore a packet that contains a CRC error in the header_ CRC. The header_CRC isthe
only CRC that the DBC Link controller must check, since the minimal Link controller will never respond to a packet
with a data payload. The max_rec field of aDBC implementing aminimal link should be set to Oh, meaning the
maximum payloadfor an asynchronous block transaction is not specified since block transactions are not supported.

A minima DBC Link controller must properly recognize and process packets with the transaction codes listed in Table
7-1.

Table 7-1. Packet Transaction Codes

Packet Transaction code
Write request for data quadlet Oh
Read request for data quadlet 4h

In addition to the two packet types, aminimal DBC link controller must also properly handle broadcast packets. If the
10-bit bus_ID is between 000 and 3FEh, and the physical_ID is set to 3Fh, then thisis a broadcast to the bus encoded
inthe bus ID.

If the bus_ID of the DBC matches the bus_ID of the packet, and if the tcode indicates that the packet is awrite
request for the data quadlet, then the DBC will accept the packet.

No acknowledge is returned in response to this type of broadcast.

If the 10-bit bus_ID is set to 3FFh and the physical_ID is set to 3Fh, then thisis a broadcast to the local bus.
If the tcode indicates that the packet is awrite request for the data quadlet, then the DBC will accept
the packet.
No acknowledge is returned in response to this type of broadcast.

A packet addressed to aminimal DBC link controller containing a tcode other than 0 or 4 will be acknowledged with
an ack_type_error response.

Ack_type error indicates that afield in the request packet header was set to an unsupported or incorrect value, or that
an invalid transaction was attempted.

32

USB DBC Class Definition, v0.9rc5 8/31/99

7.2.2 Generating Packets

A minima implementation of aDBC Link controller must be set to generate one type of packet and transaction code,
which is shown in Table 7-2.

Table 7-2. Transaction Code for Packet Generation

Packet Transaction code
Read response for data quadlet 6h

The read response packet is generated as a concatenated subaction to a read request.

7.3 Retry Code

A minima DBC Link controller does not support retries; the BUSY_TIMEOUT register is not implemented. The rt
field in aread response for data quadlet packet must always be retry _X.

7.4 Retries

Retries are not supported in aminimal DBC Link controller; the BUSY_TIMEOQOUT register is not
implemented. A minimal DBC Link controller does not retry a response packet.

7.5 Response Codes
A minima DBC Link controller must respond to requests using the response codes shown in Table 7-3.

Table 7-3. DBC Link Controller Response Codes

Response code Response name Comments
Oh resp_complete The node has completed the command —
no Errors.
6h resp_type error A field in the request packet header was set to an

unsupported or incorrect value, or an invalid
transaction was tried (such as awrite to aread-
only address).

7.6 Acknowledge Codes

A minima DBC Link controller must respond to the packets it recognizes with an acknowledge packet. The ack_codes
used by aminimal DBC Link controller are listed in Table 7-4. Table 7-3. DBC Link Controller
AcknowledgeCodes

Acknowledgment
code

Acknowledgment
name

Comments

1h

ack_complete

The node has successfully accepted the
packet. Thisis sent when the DBC receives a
non-broadcast write request for data quadiet
(tcode = 0) to avalid, writable DBC address.

2h

ack_pending

Thisis sent in response to aread request for
data quadlet if the read targetsavalid DBC
address. To be followed by a concatenated

response packet containing the data quadlet.

Eh

ack_type_error

A field in the request packet header was set to
an unsupported or incorrect value, or an
invalid transaction wastried. Thisissent in
response to al requests other than requests
with tcode values of 0 and 4.

33

USB DBC Class Definition, v0.9rc5 8/31/99

7.7 Physical Interface

The first-generation DBC link controller must interface to a 400 Mbps 1394 PHY . Future generations of DBC link
controllers will need to interface to next-generation 1394 PHY s at future 1394 bus speeds (for example, 1394a PHY's,
and speeds of 800 Mbps or higher).

7.8 Additional Features

Previous sections detailed the minimum behavior required of the 1394 Link controller section of a DBC. However, not
all Link controller implementations can meet the established minimum behavior. If a particular link controller
implementation must add extra complexity, then it is the responsibility of the Link controller implementers to account
for the extra functionality required by their design, assuring that their design works properly on a 1394 bus.

Examples of additional features required in anon-minimal link controller are listed below. Many more possibilities
exist. However, listing all possible cases where a DBC link controller would add extra complexity to itsdesign is
beyond the scope of this document.

Split transactions If aDBC Link controller implementation can be a requestor on the 1394 bus and
uses split transactions, then the SPLIT_TIMEOUT register and extralogic to
support split transactions must be included the Link controller design.

Retries If the Link controller implementation must issue retries, then the
BUSY_TIMEOUT register must be implemented along with the logic necessary
to handle the retries.

USB DBC Class Definition, v0.9rc5

8/31/99

8 Appendix (Informative)

This section shows an example implementation of a DBC Configuration ROM.

8.1 Example DBC Configuration ROM

The base address for this table is FFFF FOOO 00004. The location of the Bus_Info_Block and the Root_Directory are
fixed. The location of the Node_Unique_ID leaf and Unit_Directory are implementation-dependent, but their offsets
are specified in the root directory.

Offset

400 info_length crc_length rom crc value

404 346 334 39 | 3446
Bus Info_Block 408 Node Options

40C node vendor id | chip id hi

410 chip id lo

414 length | CRC

418 0346 module vendor ID
Root_Directory 41C 0Cis node_capabilities

420 8Dy6 indirect_offset

424 D14g unit_directory offset

434 length | CRC
Unit_Directory 438 1244 unit_spec 1D

43C 1346 unit_ sw_version

428 length | CRC
Node _Unique_ID 42C node vendor id | chip_id hi

leaf 430 chip id lo

35

USB DBC Class Definition, v0.9rc5 8/31/99

9 Appendix (Informative)

This section shows an example of the logic that can be performed in the DBC when a hardware removal request button
isimplemented on the Device Bay subsystem

The DBC logic, or rules, are shown in the following table. For more information, see section 6.6.6.1 of the Device Bay
Specification.

State Transition Cause

Any state to Bay Empty When both the 1394PRSN# and USBPRSN# pins are not asserted
low.

Bay Empty to Device Debounced When either the 1394PRSN# pin or the USBPRSN# pin is asserted
low.

Device Debounce to device inserted Debounce timer expired

Device Inserted to Device Enabled When SetFeature request is received with wValue set to

REQUEST DEVICE ENABLED STATE

Any state (other than Bay Empty) to Removal | When removal request button is pushed.
Reguested

Remova Requested to Remova Allowed When

Software-controlled interlock is disengaged
AND

Vid power is disabled

AND

Removal request interrupt is cleared.

AND
REQUEST _REMOVAL_ALLOWED_STATE

36

USB DBC Class Definition, v0.9rc5 8/31/99

10 Appendix (Informative)

This section shows the role of a USB-based DBC in the sequence of steps that carry out insertion of adevice in abay
and removal of adevice from abay.

10.1uUSB-Based DBC Insertion Task Sequence Table

This scenario begins when a user inserts a USB, 1394, or combination USB/1394 device into abay that is
controlled by a USB-based DBC. The scenario ends when the device or drivers are loaded for the device
and the device is powered-up, configured, and operational. This section parses the tasks carried out by the
Device Bay mechanical features, the DBC, and the OS to accomplish device insertion. The following Table
shows the role of the USB-based DBC in thisinsertion scenario.

37

USB DBC Class Definition, v0.9rc5

8/31/99

USB-Based DBC Insertion Task Sequence Table

Coordi nati ng the | Mechani cal DBC/ USB Control | er (05 Coordi nati ng the
Bay Feat ur es ul
1-Device is
inserted into
the bay x.
2- A shel f
provi des rough
al i gnnment .

3-Devi ce Bay
connector fine-
tunes the

al i gnnment .

4-Devi ce seats
into the
connect or.

5- Connect or
presence pin(s)
assert ed.

6- Sets
1394PRSN_STS, bit
9, or USBPRSN_STS,
bit 8, in the Bay
status bitmap (if
conpound devi ce,
sets both bits).

7 — Enters Device
Debounce state and
sets BAY_ST, bits
14-12, in the Bay
status bitmap to
101.

8 — If present,

t he hardware bay
status indicator
is set to

i ndi cate Device
Debounce.

9- After Debounce
timer has expired,
sets DEVSTSCHG
bit 10, in the Bay
status bitnmap..

10- Sets BAY_ST,
bits 14-12, in the
Bay status bitmap
to 001b.

11-1f DEVSTSCH_EN
is set, see bit 2
of the Bay status
bi t map, an
interrupt is
generated internal
to the DBC.

12- A USB | NTERRUPT
TRANSACTI ON occurs
bet ween the DBC
Class Driver and
the USB DBC
controller.

38

USB DBC Class Definition, v0.9rc5

8/31/99

USB-Based DBC Insertion Task Sequence Table

Coordi nati ng the
Bay

Mechani cal
Feat ur es

DBC/ USB Controll er

(05

Coordi nati ng the
ul

13-Sends a
GET_STATUS r equest
and determ nes the
cause of the
interrupt by
detecting that
DEVSTSCHG bit is
asserted in the
Bay status bitnap.

14- Bay status
indicator set to
i ndi cate Device
Inserted State.

15- Sends
CLEAR_FEATURE_C DE
VI CE_STATUS_CHANGE

16 — Clears
DEVSTSCHG, bit 10,
in the Bay status
bi t map

17-Sends a feature
request,
SET_FEATURE_LOCK_C
TL to engage the
sof t war e-
controll ed
interlock and
physically I ock
the device into

pl ace

18- Engages t he
sof tware-control | ed
interlock and sets

LOCK_CTL, bit 7, in
the Bay status
bi t map.

19- Sof t war e-
controll ed
interlocks are

engaged.
20- Det erm nes that
1.5Wis avail able
to turn on the Vig
power rail in bay
X.
21- Sends Feature
Request ,
SET_FEATURE_ENABLE
_VI D_PONER
22-Turns on Vg4
power rails to bay
X, and sets
PWR_CTL, bit O, in
the Bay status
bi t map.
23-Viq power

flows to the

39

USB DBC Class Definition, v0.9rc5

8/31/99

USB-Based DBC Insertion Task Sequence Table

Coordi nati ng the
Bay

Mechani cal
Feat ur es

DBC/ USB Controll er

(05

Coordi nati ng the
ul

device in bay x

24-Devi ce appears
on native bus;
native bus
enuner ates the
devi ce.

25-ldentifies
devi ce.

26- Det erm nes t hat
adequat e power

exi sts and enabl es
Vop.

27-1f bay supports
VOP swi t chi ng,

sends SET_FEATURE_
_ENABLE_VOP_POVER

28- Sends
SET_FEATURE_REQUES
T_DEVI CE_ENABLED S
TATE.

29- Set s BAY_ST,
bits 14-12, in the
Bay status bitmap
to 010b.

30a-1f present,

t he hardware bay
status indicator
is set to

i ndi cate Device

Enabl ed.

30b-1f active,
the U bay status
indicator is set
to indicate

Devi ce Enabl ed.

31-User sees the
device is ready.

40

USB DBC Class Definition, v0.9rc5 8/31/99

10.2 Button-Initiated Removal Request, USB-Based DBC

This section parses the tasks carried out by the Device Bay mechanical features, the DBC, the USB root
hub, and the OS to accomplish device removal after the user presses the removal request button at bay x.
Note that the removal reguest button is an option on a Device Bay. If there is no removal request button on
abay, the user must initiate a device removal request from Ul displayed by the OS (for more information
about this, see the next topic).

41

USB DBC Class Definition, v0.9rc5

8/31/99

USB-Based DBC Button Initiated Removal Request Task Sequence

Coordi nati ng the
Bay

Mechani cal
Feat ur es

DBC/ USB Root Hub

(05

Coordi nati ng the
ul

1- User
renoval
button

presses
request

2- Renmoval
Request si gnal
is asserted.

3-Sets
REMREQ_STS, bit
11, in the Bay
status bitnmap.

4-Bay state
BAY_ST, bits 14-
12, in the Bay
status bitmap
change to 011b
to indicate a
renoval

request ed.

5a-1f present,

t he hardware bay
status indicator
is set to

i ndi cate Device

Rermoval

Request ed.

5b-1f active,
the U bay
status indicator
is set to

i ndi cate Device
Rermoval

Request ed.

6-1f Renoval
Request
interrupts are
enabl ed, see bit
3 of the Bay
status bitnmap,
an interrupt is
gener at ed
i nternal
DBC.

to the

7- A USB

| NTERRUPT
TRANSACTI ON
occurs between
the DBC cl ass
driver and the
USB DBC
controller.

8- The USB root
hub controller
generates a
system
interrupt.

9- Sends a
GET_STATUS
request and
determ nes the
cause of the
interrupt by
detecting that
the REMREQ STS
bit is asserted
in Bay status
bi t map.

42

USB DBC Class Definition, v0.9rc5

8/31/99

USB-Based DBC Button Initiated Removal Request Task Sequence

Coordi nati ng the
Bay

Mechani ca
Feat ur es

DBC/ USB Root Hub

GS

Coordi nati ng the
ul

10- Sends a

Feat ure Request,
CLEAR_FEATURE_C_
REMOVE_REQUEST
to the DBC via
the USB root hub
controller to
clear the

REMREQ STS, bit
11, in the Bay
status bitnmap.

11-1f
“appropriate,”
pl ace device in
a logical “off”
state using
native bus
driver (for
exanple, notify
apps, etc.)

12- Devi ce stops
usi ng Vop.

13-1f the bay
supports Vop
switching as

i ndicated by bit
5in the
Subsyst em
descriptor,
sends a Feature
Request
CLEAR_FEATURE_EN
ABLE_VOP_POWER.

14-1f possible
unl oads any
appropriate
devi ce drivers

15- Sends an

Feat ure Request,
CLEAR_FEATURE_EN
ABLE_VI D_PONEER,
to the DBC via
the USB root hub
controller to

di sabl e Viq4
power .

16- Di sabl es the
Vi¢ power rai

in bay x, and
clears PWR _CTL
bit 0, in the
Bay status

bi t map.

17-Viq i s
renoved fromthe
devi ce

18-Waits the
time interva
specified by the

43

USB DBC Class Definition, v0.9rc5

8/31/99

USB-Based DBC Button Initiated Removal Request Task Sequence

Coordi nati ng the | Mechani cal DBC/ USB Root Hub | OS Coordi nati ng the
Bay Feat ur es U

devi ce

19- Sends a

Feat ure Request,
CLEAR_FEATURE_LO

CK_CTL, to the
DBC via the USB
root hub

controller to
unl ock the
sof t war e-
controll ed
interl ock.

20- Di sengages
the software-
controll ed
interlock and

cl ears LOCK CTL,
bit 7, in the
Bay status

bi t map.

21- Sof t war e-
controll ed
interlocks are
di sengaged

22-1f any bays
have a security
| ock as

i ndicated by bit
4 in the
Subsyst em
descriptor;
sends a
GET_STATUS
request to
determ ne the
state of SL_STS
bit 15, in the
Bay status
bitmap. If bit
not set, skips
ahead to step
26

23-Prompt s user
that before
devi ce can be
removed, user
must di sengage
security lock

24- User responds
to pronpt.

25-Determnes if
security lock is
di sengaged

sends a
GET_STATUS
request to
determne if
SL_STS, bit 15

in the Bay
status bitmap is
still set. If

USB DBC Class Definition, v0.9rc5

8/31/99

USB-Based DBC Button Initiated Removal Request Task Sequence

Coordi nati ng the
Bay

Mechani cal
Feat ur es

DBC/ USB Root Hub

(05

Coordi nati ng the
ul

bit is set, go
back to step 23.

26- Sends a

Feat ure Request,
SET_FEATURE_REQU
EST_REMOVAL_ALLO
VD, to the DBC
via the USB root
hub controller
to request bay
state indicator
change to Device
Rermoval Al | owed
(this
transaction
writes 100b into
t he BAY_STREQ,
bits 6-4, of the
Bay status

bi t map) .

27-Sets the
BAY_ST, bits 14-
12, in the Bay
status bitmap to
100b to indicate
t he Renoval

Al |l oned st ate.

28a-1f present,

t he hardware bay
status indicator
is set to

i ndi cate Device

Rermoval Al | owed.

28b-1f active,
the U bay
status indicator
is set to

i ndi cate Device
Rermoval Al |l owed.

29-User realizes
it is safe to
renove the

devi ce.
30-1f present,
ej ect mechani sm
ej ects device
for user

31- User renoves

devi ce.

32- Connect or
presence pin(s)
deassert ed.

33-C ears
1394PRSN_STS,
bit 9, or
USBPRSN_STS, bit
8, in the Bay
status bitmap
(i f conpound
device, clears
both bits).

34-1f
REMOVAL_WAKE_EVE
NT_ENABLE is set
(see bit 1 in

45

USB DBC Class Definition, v0.9rc5

8/31/99

USB-Based DBC Button Initiated Removal Request Task Sequence

Coordi nati ng the
Bay

Mechani cal
Feat ur es

DBC/ USB Root Hub

(05

Coordi nati ng the
ul

the Bay status
bi t map)
DEVSTSCHG, bit
10, in the Bay
status bitmap is
set.

35-Sets the
BAY_ST, bits 14-
12, in the Bay
status bitmap to
000b to indicate

Bay Enpty.

36-1f Device

St at us Change
and Renoval Wke
interrupts are
enabl ed, see
bits 2 and 1 of
the Bay status
bi t map, an
interrupt is
gener at ed
internal to the
DBC.

37- An USB

| NTERRUPT
TRANSACTI ON
occurs between
the DBC and the
USB root hub
controller.

38- The USB root
hub controller
generates a

system

interrupt.
39- Recei ves the
system
interrupt.
40- Sends a

GET_STATUS to
each bay to
determ nes the
bay | ocation of
the interrupt by
readi ng the
DEVSTSCHG bit in
each Bay status
bitmap until it
finds one that
is set.

41- Det erni nes
the cause of the
interrupt by
determ ning both
the 1394PRSN_STS
and USBPRSN_STS
bits are
cleared, so

devi ce nust have

46

USB DBC Class Definition, v0.9rc5

8/31/99

USB-Based DBC Button Initiated Removal Request Task Sequence

Coordi nati ng the
Bay

Mechani cal
Feat ur es

DBC/ USB Root Hub

(05

Coordi nati ng the
ul

been renoved.

42- Sends a
FEATURE_REQUEST,
CLEAR_FEATURE_C_
DEVI CE_STATUS_CH
ANGE, to the DBC
via the USB root
hub controller
to clear the
“sticky”
DEVSTSCHNG, bit
10, in the Bay
status bitnmap.

43a-1f present,

43b-1f active,

t he hardware bay the U bay
status indicator status indicator
is set to is set to
i ndi cat e Bay i ndi cat e Bay
Enpty. Enpty.

44- User gets

closure on the
request.

47

USB DBC Class Definition, v0.9rc5 8/31/99

10.3 Ul-Initiated Removal Request, USB-Based DBC

This section parses the tasks carried out by the Device Bay mechanical features, the DBC, the USB root
hub, and the OS to accomplish device removal after the user initiates a device removal request from the Ul
displayed by the OS.

48

USB DBC Class Definition, v0.9rc5

8/31/99

USB-Based DBC Ul Initiated Removal Request Task Sequence

Coordi nati ng the | Mechani cal DBC/ USB Root Hub | OS Coordi nati ng the
Bay Feat ur es ul
1-User initiates
a device renoval
request.
2- Uses

informati on
returned by the
U to determ ne
whi ch bay the
user wants to
remove the
device from (bay
Xx), then sends a
Feat ure Request,
SET_FEATURE_REMO
VAL_REQUESTED_ST
ATE, to the DBC
via the USB root
hub controller
to set the bay
to the Renoval
Request ed state
(this
transaction
wites 01llb to
BAY_STREQ, bits
6-4, in the Bay
Status bitnpa).

3-Sets BAY_ST,
bits 14-12, in
the Bay status
bitmap to 011lb
to indicate
Renoval

Request ed.

4(a)-1f present,
t he hardware bay
status indicator
is set to

i ndi cate Device

Rermoval

Request ed.

4(b)-1f hardware
bay status
indicator is not
present, the Ul
bay status
indicator is set
to indicate

Devi ce Renoval
Request ed.

5-User realizes
system has begun
process of

removi ng device
from bay x.

6-1f
“appropriate”,
pl ace device in
a logical “off”
state using
native bus

driver (for
exanple, notify
apps, etc.).

7- Devi ce stops
usi ng Vop.

49

USB DBC Class Definition, v0.9rc5

8/31/99

USB-Based DBC Ul Initiated Removal Request Task Sequence

Coordi nati ng the
Bay

Mechani ca
Feat ur es

DBC/ USB Root Hub

(05

Coordi nati ng the
ul

8-1f the bay
supports Vop
switching as
indicated by bit
5in the
Subsyst em
descriptor,
sends a Feature
Request ,
CLEAR_FEATURE_EN
ABLE_VOP_POWER.

9- Unl oads any
appropriate
devi ce drivers

10- Sends a

Feat ure Request,
CLEAR_FEATURE_EN
ABLE_VI D_PONER
to the DBC via
the USB root hub
controller to
turn of f Vig
power in bay Xx

11- Di sabl es Vg
power rail in
bay x and clears
PWR_CTL, bit O
in the Bay
status bitmap

12-Viq i s
renoved from
devi ce

13-Waits the
time interva
specified by the
devi ce

14- Sends a
Feat ure Request,
CLEAR_FEATURE_LO

CK_CTL, to the
DBC via the USB
root hub

controller to
unl ock the
sof t war e-
controll ed
interl ock.

15- Di sabl es the
sof t war e-
controll ed
interlock and

cl ears LOCK CTL,
bit 7, in the
Bay status

bi t map.

16- Sof t war e-
controll ed
interlocks are
di sabl ed

50

USB DBC Class Definition, v0.9rc5

8/31/99

USB-Based DBC Ul Initiated Removal Request Task Sequence

Coordi nati ng the
Bay

Mechani ca
Feat ur es

DBC/ USB Root Hub

GS

Coordi nati ng the
ul

17-1f any bays
have a security
| ock as
indicated by bit
4 in the
Subsyst em
descriptor;
sends a
GET_STATUS
request to
determ ne the
state of SL_STS
bit 15, in the
Bay status
bitmap. If bit
not set, skips
ahead to step
21

18- Pronpt s user
that before
devi ce can be
removed, user
must di sengage
security | ock

19- User responds
to pronpt.

20- Deternines
if security lock
i s di sengaged
sends a
GET_STATUS
request to
determne if
SL_STS, bit 15

in the Bay
status bitmap is
still set. If

bit is set, go
back to step 18

21-Sends a

Feat ure Request,
SET_FEATURE_REQU
EST_REMOVAL_ALLO
WED_STATE, to
the DBC via the
USB root hub
controller to
change the bay
indicator state
to Device

Rermoval Al | owed
(this sets
BAY_STREQ bits
6-4, in the Bay
status bitmap to
100b

22-Sets the
BAY_ST, bits 14-
12, in the Bay
status bitmap to
100b to indicate
Devi ce Renobva

51

USB DBC Class Definition, v0.9rc5

8/31/99

USB-Based DBC Ul Initiated Removal Request Task Sequence

Coordi nati ng the | Mechani cal DBC/ USB Root Hub | OS Coordi nati ng the
Bay Feat ur es ul
Al | oned.
23(a)-If 23(b)-1f active,
present, the the U bay
har dwar e bay status indicator
status indicator is set to
is set to i ndi cate Device
i ndi cate Device Rermoval Al | owed.
Rermoval Al | owed.
24-Pops up a Ul
to informuser
that it is safe
to renove the
devi ce.
25-User realizes
devi ce can be
renoved.
26- User
realizes it is
safe to renove
t he devi ce.
27-1f present,
ej ect mechani sm
ej ects device
for user
28- User renoves
devi ce.
29- Connect or
presence pin(s)
deassert ed.
30- dears
1394PRSN_STS,
bit 9, or

USBPRSN_STS, bit
8, in the Bay
status bitmap

(i f conpound
device, clears
both bits).

31- If
REMOVAL_WAKE_EVE
NT_ENABLE is set
(see bit 1 of
the Bay status

bi t map), sets
DEVSTSCHG, bit
10, in the Bay
status bitnmap.

32-Sets the
BAY_ST, bits 14-
12, in the Bay
status bitmap to
000b to indicate

Bay Enpty.

33-1f Device

St at us Change
and Renoval Wke
Enabl e
interrupts are

52

USB DBC Class Definition, v0.9rc5

8/31/99

USB-Based DBC Ul Initiated Removal Request Task Sequence

Coordi nati ng the | Mechani cal DBC/ USB Root Hub | OS Coordi nati ng the
Bay Feat ur es ul
enabl ed, see bit
2 and 1 of the
Bay status
bi t map, an
interrupt is
gener at ed
internal to the
DBC.
34- A USB
| NTERRUPT
TRANSACTI ON
occurs between
the DBC and the
USB root hub
controller.
35-The USB root
hub controller
generates a
system
interrupt.
36- Sends a
GET_STATUS
request for each
bay to deterni ne
the bay | ocation
of the interrupt
by reading the
DEVSTSCHG bit in
each Bay status
bitmap until it
finds one that
is set.
37- Det er m nes
the cause of the
interrupt by
determ ning both
t he
1394PRSN_STS,
bit 9, and
USBPRSN_STS, bit
8, in the Bay
status bitmap
are cleared, so
devi ce must have
been renoved.
38-Sends a
Feat ure Request,
CLEAR_FEATURE_C_
DEVI CE_STATUS_CH
ANCGE, to the DBC
via the USB root
hub controller
to clear the
“sticky”
DEVSTSCHNG, bit
10, in the Bay
status bitnmap.
39(a)-If 39(b)-I1f active,
present, the the U bay
har dwar e bay status indicator
status indicator is set to
is set to i ndi cat e Bay

53

USB DBC Class Definition, v0.9rc5

8/31/99

USB-Based DBC Ul Initiated Removal Request Task Sequence

Coordi nati ng the | Mechani cal DBC/ USB Root Hub | OS Coordi nati ng the
Bay Feat ur es U
i ndi cat e Bay Enpty.

Empty.

440- User gets
closure on the
request.

USB DBC Class Definition, v0.9rc5 8/31/99

10.4 System Power On Task Sequence Tables

As the system powers up, the DBC resets and the PWR_EN and LOCK_EN control signals are negated.
Therefore, Viq will not be applied to any present devices and the software-controlled interlocks will not be
engaged. (Device retention mechanisms or optional security mechanisms may be engaged.) After the OS
has loaded, the OS will read the DBC Bay status bitmaps, to determine if devices are present, and proceed
through the appropriate previously defined device insertion sequence.

A platform provider may chose to support booting from a Device Bay device. In this case, the system
BIOS must have the ahility to find and communicate with the DBC, identify possible boot devices via their
native bus, (1394 or USB), and load the OS from a Device Bay device. A possible sequence is described in
the following section.

10.4.1 System Power On Task Sequence Tables

This section parses the tasks carried out by the Device Bay mechanical features, the DBC, the USB root
hub, the system BIOS, and the OS when the system is powered up.

55

USB DBC Class Definition, v0.9rc5 8/31/99

Coordi nati ng the | Mechani cal DBC/ USB Root Hub oS / BIOs Coordi nati ng the
System and Bay Feat ures Control |l er ul

1-User initiates
a system power -
up.

2-LOCK_EN and
PWR_EN for all bays
are negat ed.

I nterrupt enabl es
are negat ed.

3-Sets
1394PRSN_STS, bit
9, or USBPRSN, bit
8, in the Bay
status bitmap (if
conpound devi ce,
sets both bits) for
each bay with a
devi ce present

[NOTE: No
interrupt is
generated from
devi ces al ready
present during the
power - up sequence.]

4-BlI OS det erm nes

t he nunber of bays
in the system and
the bay types from
the DBC Subsystem
descriptor.

5-BlI OS det erm nes
the total Device
Bay sub-system
power and thermal
capabilities from
the DBC Subsystem
descriptor.

6- Bl OS det erni nes
t he maxi mum nunber
of devices that
can be supported.

[Note: Possible
power budgeti ng
sof tware agents
are not likely
active yet.]

7-BI OS deternines
if the system CS
is supported via a
Devi ce Bay devi ce.
If not, once the
OS is |loaded, it
will control the
Devi ce Bay sub-
system |If yes,
conti nue.

8-BlI OS sends a
GET_STATUS r equest
to the DBC to
determ ne the
state of
1394PRSN_STS, bit

56

USB DBC Class Definition, v0.9rc5

8/31/99

Coordi nati ng the
System and Bay

Mechani cal
Feat ur es

DBC/ USB Root Hub
Controller

oS / BIGS

Coordi nati ng the
ul

9, and
USBPRSN_STS, bit
8, of the bays; if
one (or both) are
set in any bays, a
device(s) are
present.

9-BI CS sends a
Feat ure Request,
SET_FEATURE_LOCK _C
TL, to the DBC via
the USB root hub
controller to
physically I ock
the first present
device into place.

10- Enabl es the
sof tware-control | ed
interlock and sets

LOCK_CTL, bit 7, in
the Bay status
bi t map.

11- Sof t war e-
controll ed
interlocks are

enabl ed.
12-BI CS sends a
Feat ure Request,
SET_FEATURE_ENABLE
_VID POAER, to the
DBC via the USB
root hub
controller to
enabl e Viyq power to
the device.
13- Enabl es Viq4 power
rails to bay x and
sets PWR_CTL, bit
0, in the Bay
status bitnmap.
14- V4 power

flows to the
device in bay x

15- Devi ce appears
on native bus.

BI OS identifies
the device to
determne if it
can load the OS
fromthis device
type. |If yes,
skip to #23.

16- Sends a Feature
Request
CLEAR_FEATURE_ENAB
LE VI D PO/ER, to
the DBC via the
USB root hub
controller to

di sabl e Vigq power
to bay x.

57

USB DBC Class Definition, v0.9rc5

8/31/99

Coordi nati ng the | Mechani cal DBC/ USB Root Hub oS / BIOs Coordi nati ng the
System and Bay Feat ures Control |l er ul
17-Di sabl es Vg
power rail to bay x
and cl ears PWR_CTL,
bit 0, in the Bay
status bitnmap.
18-Vig i s
renoved the
devi ce.

19-Return to #9
and conti nue

| ooking for a
possi bl e boot
devi ce.

20-BI CS sends a
Feat ure Request,
SET_FEATURE_REQUES
T_DEVI CE_ENABLED_S
TATE, to the DBC
via the USB root
hub controller to
request bay state
change to Device
Enabl ed (this
transaction wites
010b to BAY_STREQ
bits 6-4, in the
Bay Status

bi t map) .

21- Sets BAY_ST,
bits 14-12, in the
Bay status bitmap
to 010b to indicate
Devi ce Enabl ed.

22-1f present,

t he hardware
status indicator
is set to

i ndi cate device
enabl ed.

23-1f the bay
supports Vop
switching as
indicated by bit 5
in the Subsystem
descriptor, sends
a Feature Request,
SET_FEATURE_ENABLE
_VOP_POVER. |f not
skip to #25.

24-1f subsystem Vop
power switching is
supported, enables
t he subsystem Vop
power rails.

25-BI OS i ndi cates
via the native bus
that the device
can enabl e V.

26- Bl CS determ ne
if the OSis
present on the

58

USB DBC Class Definition, v0.9rc5

8/31/99

Coordi nati ng the | Mechani cal DBC/ USB Root Hub oS / BIOs Coordi nati ng the
System and Bay Feat ures Control |l er ul

device. If yes,
skip to #38.
27-BI CS indi cates
via the native bus
that the device
nmust di sabl e Vgp.
28-1f the bay
supports Vop
switching as
indicated by bit 5
in the Subsystem
descriptor, sends
a Feature Request,
CLEAR_FEATURE_ENAB
LE_VOP_POWAER. |f
not skip to #30.

29-1f Vop power

switching is

supported by the

Subsystem di sabl es

t he subsystem Vop

power rail.
30-Sends a Feature
Request ,
CLEAR_FEATURE_ENAB
LE_VI D POAER, to
the DBC via the
USB root hub
controller to turn
of f Vig power in
bay x.

31-Di sabl es Vig

power rail in bay x

and cl ears PWR_CTL,

bit 0, in the Bay

status bitnmap.

32-Viqg is

renoved from
devi ce.

33-Waits the tinme
interval sp-
ecified by the
devi ce.

34- Sends a Feature
Request ,
SET_FEATURE_REQUES
T_DEVI CE_| NSERTED _
STATE, to the DBC
via the USB root
hub controller to
return the bay
indicator state to
Device is inserted
but not ready
(this sets
BAY_STREQ bits 6-
4, in the Bay
status bitnmap).

35-Sets the
BAY_ST, bits 14-12,
in the Bay status

59

USB DBC Class Definition, v0.9rc5

8/31/99

Coordi nati ng the
System and Bay

Mechani cal
Feat ur es

DBC/ USB Root Hub
Controller

oS / BIGS

Coordi nati ng the
ul

bitmap to 001b to
i ndi cate Device
I nserted.

36-1f present,

t he hardware bay
status indicator
is set to

i ndi cate Device

I nserted.

37-Return to #9
and find the next
devi ce.

38-0S is booted
and assunes
control of the
Devi ce Bay sub-
system

60

USB DBC Class Definition, v0.9rc5 8/31/99

10.5 System Power Down Task Sequence Tables

This section parses the tasks carried out by the Device Bay mechanical features, the DBC, the USB root
hub, and the OS to power-down the system after the user initiates a shutdown regquest from the Ul displayed
by the OS.

61

USB DBC Class Definition, v0.9rc5

8/31/99

Coordi nati ng the
Bay

Mechani ca
Feat ur es

DBC/ USB Root Hub

Coordi nati ng the
ul

1-User initiates
a system
shut down
request.

2-1f
“appropriate,”
pl ace device in
a logical “off”
state using
native bus

driver (for
exanple, notify
apps, etc.)

3- Device stops
usi ng Vop.

4- |f the bay
supports Vop
switching as
indicated by bit
5in the
Subsyst em
descriptor

sends a Feature
Request ,
CLEAR_FEATURE_EN
ABLE_VOP_POWER.
If not skip to
#6

5-1f subsystem
Vop power
switching is
support ed

di sabl es the Vop
power rails.

6- Sends a

Feat ure Request,
CLEAR_FEATURE_EN
ABLE_VI D_PONER
to the DBC via
the USB root hub
controller to

di sabl e Viq4

power to each
bay.

7-Di sabl es Vig
power rail to
all bays and
clears the
PWR _CTL bits
bit 0, in the
Bay status

bi t maps.

8-Viy i s renoved
from devi ces

9-Wiits the

| ongest tine
interva

speci fied by any
devi ce

10-If security
lock is

62

USB DBC Class Definition, v0.9rc5 8/31/99

Coordi nati ng the | Mechani cal DBC/ USB Root Hub | OS Coordi nati ng the
Bay Feat ur es U

supported as

i ndicated by bit
4 in the DBC
Subsyst em
descriptor,
sends a
GET_STATUS
request to each
bay to detern ne
the state of the
security | ocks
via SL_STS, bit
15, in the Bay
status bitnmap.

11-1f necessary,
a U indicating
the bays that
are |l ocked is

di spl ayed

12- Sends a

Feat ure Request,
SET_FEATURE_REQU
EST_REMOVAL_ALLO
WED_STATE, to
the DBC via the
USB root hub
controller to
change the bay
state for each
bay to Device
Renmoval Al |l owed,
(provided a
security lock is
not present and

engaged) .
13- Sets the
BAY_ST, bits 14-
12, in the Bay
status bitnmaps
to 100b to
i ndi cate Device
Renmoval Al |l owed
for each bay, as
appropriate
14- User realizes
devi ces can be
removed
15- Shut down
process
conpl et es
16- Syst em power -
down nessage is
di spl ayed
17- User may
remove power and
unl ocked
devi ces.

63

USB DBC Class Definition, v0.9rc5 8/31/99

10.6 Button-Initiated Device Removal Scenario

This scenario begins when a user requests the removal of a device from a bay that is controlled by a USB-based DBC;
the user can make a device removal request either through software (for example, by a Ul selection) or through
hardware (for example, by pressing a removal-request button). The scenario ends when the device has been physically
removed from the bay. The following flowchart, Figure 10-2, shows the role of the USB-based DBC in this device
removal scenario.

the

USB DBC Class Definition, v0.9rc5

8/31/99

Figure 10-2. Device Removal Scenario Flow Chart

Device Removal Requested

Update Bay x status to
“Removal Reauested”

/ Bay x Interrupt /

Get Bay x Status

1. DisableBay xVid
power

1. Disable Bay x software
interlock

1. Update Bay x status to
“Removal Allowed”

|

Device Removed

Update Bay x status to

“Bav Empty”

/ Bay x Interrupt /

Get Bay x Status

Set Bay x
Properties

65

