
USB DBC Class Definition, v0.9rc5 8/31/99

1

Universal Serial Bus
Device Class Definition

for
Device Bay Controllers

0.9rc5 Draft Revision
August 31, 1999

USB DBC Class Definition, v0.9rc5 8/31/99

2

Scope of this Revision
The 0.8f revision reflects input from the founding members of the Class Working Group (see Contributors list below).
The structure of this specification is stable, new members are joining the Class Working Group, and the content is
being revised based on their feedback.

Contributors
John Dunn, Microsoft
Shaun Pierce, Microsoft
John Nels Fuller, Microsoft
Dan Shapiro, Microsoft
Jeff Stevens, Compaq
Charlie Shaver, Compaq
Chuck Stancil, Compaq
Paul Stanley, Compaq
Krunali Patel, Texas Instruments
George Soler, Microsoft
Paul Brant, SMSC
Steve Chang, KC Technology
Sue Vining, Texas Instruments
Jeff Enoch, Texas Instruments
Bryce Leach, Texas Instruments
Grant Ley, Texas Instruments
David Wooten, Compaq
Mark Williams, Microsoft
Clint Hanson, Granite Microsystems
E-mail: Paul.Brant@smsc.com

Revision History
Revision Date; Filename Author Description
0.5 7/28/97 John Dunn Base version
0.51a 8/2/97 Added usages for 1394, 1394/USB

port mappings and power controls.
0.60 11/10/97 Dan Shapiro

Shaun Pierce
Removed references to HID

0.61 12/18/97;
Dbcclas1.doc

John Dunn,
Shaun Pierce,
Mark Williams

Added class-specific requests,
edited descriptors, put into format
expected by USB DWG.

0.62 12/19/97;
Dbcclas2.doc

John Dunn, Mark
Williams

Added “Notification Thru Interrupt
Pipe” section.

0.62a 12/23/97;
Dbcclas2a.doc

Jeff Stevens Added DBC GUID, Bay x Port
Mapping, and Power Capabilities
descriptors

0.62b 1/6/98 ;
Dbcclas2b.doc

Jeff Stevens
Dan Shapiro
Charlie Shaver

Added PHY reg’s and corrected
power descriptors from Charlie’s
comments.
Merged w/ Dan Shapiro’s
comments

0.62x 1/11/98;
Dbccls2x.doc

John Dunn
Mark Williams

Eliminated requests to write to DBC
GUID register, Bay x Port Mapping
Register, and Device Bay Power
Capabilities Registers because
these are read-only registers.
Added requests the read and write
the PHY control register.
Moved definition of 1394 Config
ROM content that DBC must
support back into the Device Bay
Spec.

USB DBC Class Definition, v0.9rc5 8/31/99

3

Moved Task Sequence Tables for
USB-based DBC from Device Bay
Spec to this spec and updated
Sequence Table content with
specific requests defined in this
spec.

0.70 1/24/98 Jeff Stevens
Charlie Shaver
Chuck Stancil
John Dunn
Mark Williams

Made changes to make it clear DBC
is self-powered USB function and
not self-powered.
Added Section 6 to include all
requirements for USB-based DBC
for one of its functions, which is to
emulate a 1394 Link layer for its
associated PHY.
Added Section 7, informative
appendix that shows a minimal Link
controller implementation in a DBC.
Added Section 8, informative
appendix that shows an example
implementation of a minimal
Configuration ROM space in a DBC.
Added vendor-specific requests
mechanism.
Reinstated Write CGUIDR and
Write BPMRx requests; added
constraint to Write DBCCR, Write
CGUIDR, Write BPMRx, and Write
DBPCRx requests.
Walked through first draft of Task
Sequence Tables and revised as
necessary.

0.7a 2/3/98 John Dunn
Mark Williams

Incorporated feedback from USB
DWG breakout session in Atlanta;
most of the changes are in section 5
and in the Task Sequence Table
appendix.

0.8 2/24/98 John Dunn
Mark Williams

Incorporated feedback from all e-
mail received from attendees at
USB DWG breakout session in
Atlanta

0.8a 2/25/98 John Dunn
George Soler
Mark Williams

Rewrote “Management Overview”
section to better describe
relationship between the hub and
the permanently attached DBC;
moved static Form Factor fields
from status bit-map to Bay
Descriptor; redefined status bit-map
fields; changed illustrations to show
remote Device Bay application;
reformatted Task Sequence Tables.

0.8b, c, and d 3/10/98 John Dunn
Mark Williams
George Soler

Miscellaneous edits based on
feedback

0.8e 3/12/98 Mark Williams
Jeff Stevens

A few edits based on feedback

USB DBC Class Definition, v0.9rc5 8/31/99

4

0.9rc 3/18/98 Mark Williams Edits requested by DBC Class
Device Working Group at f2f
meeting on Long Island, NY

0.9rc1 5/7/98 Mark Williams Edits requested on last day of DBC
Class Working Group at f2f meeting
on Long Island, NY

0.9rc2 5/27/98 Mark Williams
John Dunn

Added Get Bay Descriptor and Get
Subsystem Descriptor class-specific
requests in response to Sue
Vining’s e-mail; moved feature
requests from section 5.4 to section
5.3; resolved “Note to Reviewers”
undone items that were brought up
at f2f meeting on Long Island, NY

0.8f 6/17/98 Mark Williams
John Dunn
Jeffrey Stevens
Chuck Stancil
Paul Brant

Bay subsystem wakup event
changes. Removed USB Device
wakup events section. Minor
clarifications and typo’s. Modified
disclaimer information

0.9rc3 8/3/98 John Dunn
Jeffrey Stevens
Chuck Stancil
Paul Brant
Grant Ley

Consolidated diagrames. Added
diagrams to clarify DBC USB Hub
implementations. Added Examples.;
Changed Subsystem Descriptor
Power length fields; Removed
requirement got 1394 phy to
generate interrupt conditions;

0.9rc4 8/20/98 Paul Brant
Chuck Stancil

Modify Subsystem Descriptor – Add
programable Device Debounce time
before setting DEVSTSCHG bit +
transitioning to Device Inserted
state.
Define additional state in the Bay
Status Bit-map - Device De-bounce.

0.9rc5 8/31/1999 Paul Brant
John Dunn
Grant Ley
Chuck Stancil

Fixed subsystem desc. Offsets
Added ENABLE_VOP_POWER
value to the Set Feature request
Added additional state transition
“De-bounce” to the Section 9
Appendix
Changed USB-Based DBC Insertion
flow chart to table format

USB DBC Class Definition, v0.9rc5 8/31/99

5

USB Device Class Definition for Device Bay Controllers
Copyright © 1997, 1998, 1999 USB Implementers Forum

All rights reserved.
INTELLECTUAL PROPERTY DISCLAIMER

THIS SPECIFICATION IS PROVIDED “AS IS” WITH NO WARRANTIES WHATSOEVER INCLUDING
ANY WARRANTY OF MERCHANTABILITY, FITNESS FOR ANY PARTICULAR PURPOSE, OR ANY

WARRANTY OTHERWISE ARISING OUT OF ANY PROPOSAL, SPECIFICATION, OR SAMPLE.
A LICENSE IS HEREBY GRANTED TO REPRODUCE AND DISTRIBUTE THIS. NO OTHER LICENSE,

EXPRESS OR IMPLIED, BY ESTOPPEL OR
OTHERWISE, TO ANY OTHER INTELLECTUAL PROPERTY RIGHTS IS GRANTED OR INTENDED

HEREBY.
AUTHORS OF THIS SPECIFICATION DISCLAIM ALL LIABILITY, INCLUDING LIABILITY FOR

INFRINGEMENT OF PROPRIETARY RIGHTS, RELATING TO IMPLEMENTATION OF
INFORMATION IN THIS SPECIFICATION. AUTHORS OF THIS SPECIFICATION ALSO DO NOT
WARRANT OR REPRESENT THAT SUCH IMPLEMENTATION(S) WILL NOT INFRINGE SUCH

RIGHTS.
All product names are trademarks, registered trademarks, or service marks of their respective owners.
Please send comments via electronic mail to usbdevice@mailbag.intel.com

USB DBC Class Definition, v0.9rc5 8/31/99

6

Table of Contents
1 Introduction.. 8

1.1 Scope.. 8
1.2 Purpose... 8
1.3 Related Documents ... 8

2 Management Overview ... 9
2.1 Device Bay Subsystem Architecture Containing a USB DBC Function 9
2.2 Hub and DBC Power Distribution and Power Switching .. 13

2.2.1 Power Distribution... 13
2.2.2 Power Switching ... 13
2.2.3 Bay Subsystem Wakeup Events ... 13

3 Functional Characteristics ... 14
3.1 Notification Through the Interrupt Pipe ... 14
3.2 1394 Link Requirements ... 15

4 Descriptors ... 16
4.1 Device Descriptor ... 16

4.1.1 Class-Specific Device Descriptor ... 16
4.1.1.1 Subsystem Descriptor .. 16
4.1.1.2 Bay Descriptor... 17

4.1.2 Standard Device Descriptor ... 18
4.2 Configuration Descriptor... 20

4.2.1 Class-Specific Configuration Descriptor .. 20
4.2.2 Standard Configuration Descriptor... 20

4.3 Interface Descriptor... 20
4.3.1 Class-Specific Interface Descriptor .. 20
4.3.2 Standard Interface Descriptor... 20

4.4 Endpoint Descriptor .. 22
4.4.1 Class-Specific Endpoint Descriptor.. 22
4.4.2 Standard Endpoint Descriptors... 22

4.4.2.1 Control Endpoint Descriptor .. 22
4.4.2.2 Interrupt Endpoint Descriptor... 22

5 Requests ... 23
5.1 Standard Requests ... 23
5.2 Vendor-Specific Requests.. 23
5.3 Class-Specific Requests... 23

5.3.1 Get Bay Status... 24
5.3.2 Get PHY Register.. 25
5.3.3 Set PHY Register... 25
5.3.4 Feature Requests.. 26

5.3.4.1 Set Feature... 26
5.3.4.2 Clear Feature ... 26
5.3.4.3 Feature Selector Values.. 26

6 Appendix (Normative) .. 28
6.1 Reporting PHY Interrupt Conditions.. 28
6.2 Providing Link Layer Services... 28
6.3 Providing 1394 CSR Space and Configuration ROM ... 28

6.3.1 CSR Space .. 29
6.3.2 Providing Configuration ROM... 29

7 Appendix (Informative) .. 32
7.1 Minimal Link Controller Transaction Capability .. 32
7.2 1394 Packets ... 32

7.2.1 Receiving Packets.. 32
7.2.2 Generating Packets .. 33

7.3 Retry Code.. 33
7.4 Retries .. 33

USB DBC Class Definition, v0.9rc5 8/31/99

7

7.5 Response Codes .. 33
7.6 Acknowledge Codes.. 33
7.7 Physical Interface.. 34
7.8 Additional Features ... 34

8 Appendix (Informative) .. 35
8.1 Example DBC Configuration ROM ... 35

9 Appendix (Informative) .. 36
10 Appendix (Informative)... 37

10.1 Device Insertion Scenario.. 37
10.2 Button-Initiated Device Removal Scenario .. 64

USB DBC Class Definition, v0.9rc5 8/31/99

8

1 Introduction

1.1 Scope
The Universal Serial Bus Device Class Definition for Device Bay Controllers (this specification) applies to all
implementations of a Device Bay Controller (DBC) that communicate with the system using USB. Any DBC that
appears as a USB device or sends its control signals across USB must comply with this specification in order to be
Device Bay-compliant.

The Universal Serial Bus Device Class Definition for Device Bay Controllers does not apply to DBCs that interface to
the system through the Advanced Control and Power Interface (ACPI). For more information about ACPI-based
DBCs, see the Device Bay Specification.

In case of a conflict between this document and the Device Bay Specification, the Device Bay Specification shall have
precedence.

1.2 Purpose
The purpose of this document is to describe the minimum capabilities and characteristics that a USB-based Device Bay
Controller device must possess. This document also provides recommendations for optional features.

1.3 Related Documents
• Universal Serial Bus Specification, revision 1.1 (also referred to as the USB Specification). In particular, see

Chapter 9, “USB Device Framework”. See www.usb.org/developers/
• Device Bay Interface Specification, Revision 0.85, or later.
• IEEE 1394 -1995 or later Terms and Abbreviations
This section defines terms used throughout this document. For additional terms that pertain to the Universal Serial Bus,
see Chapter 2, “Terms and Abbreviations,” in the USB Specification and “Definitions of Terms” in section 1 of the
Device Bay Interface Specification.

Device Bay subsystem
One or more Device Bay compliant bays controlled by a single Device Bay Controller.

Device Bay hub
An USB hub which provides the USB port connectivity for the USB Device Bay Controller and the bays

USB DBC Class Definition, v0.9rc5 8/31/99

9

2 Management Overview
Every Device Bay subsystem requires one DBC.

A USB DBC must:
• Manage device insertion events.
• Manage device removal events.
• Associate inserted devices with downstream ports on its hub.
• Manage staged power consumption by the inserted devices.

This specification defines a DBC that is a USB function. The USB Core Specification defines a function as a device
that is able to transmit or receive data or control information over the USB bus.

2.1 Device Bay Subsystem Architecture Containing a USB DBC
Function

A DBC function uses USB to interface with the host.
The DBC and the bays it controls are all attached to ports on the same hub. Other ports on the hub can have other uses;
for example, other ports on the hub can provide walk-up connectors for other USB devices, as shown in Figure 2.1.

USB Root Controller

PCI

1394 Link Controller

1394 PHY

1394 PHYUSB Hub Controller DBC

Device Bay 1

Device Bay 2

Walk-up
Port

Walk-up
Port

Walk-up
Port

PHY/Link
Interface

PHY/Link
Interface

Walk-up
Port

Walk-up
Port

Device Bay
Subsystem

1 2 3

0

1 2 3

4

4

USB DBC Class Definition, v0.9rc5 8/31/99

10

Figure 2-1. Remote Device Bay Architecture Showing Relationships Between USB Hub, DBC, 1394 PHY Link
Interface and Bays

NOTE: Port numbers were arbitrarily assigned for use as with and example Bay Descriptor (See Descriptors chapter)

A DBC function is permanently attached to a port on a USB hub. A DBC function may be integrated in the same
physical package as the hub, but is not required.
The Device Bay hub is the hub directly upstream from the Device Bay Controller and Device Bay USB ports.
Examples of a correct and incorrect implementation of the Device Bay hub are illustrated in Figure 2-2 and 2-3.

USB DBC Class Definition, v0.9rc5 8/31/99

11

USB Device Bay Hub

Device Bay Controller

U
S

B
 D

ow
n

S
tr

ea
m

C
on

ne
ct

io
n

D
ev

ic
e

B
ay

 C
on

ne
ct

or

U
S

B
 D

ow
n

S
tr

ea
m

 C
on

ne
ct

io
n

to
 D

ev
ic

e
B

ay
 P

or
t

D
ev

ic
e

B
ay

 C
on

tr
ol

 S
ig

na
ls

Valid
Configuration

F
ro

m
 U

ps
tr

ea
m

R
oo

t C
on

tr
ol

le
r

Figure 2-2. Example of a Valid Remote Device Bay Architecture Showing Relationships Between
USB Hub, DBC, and Device Bay Connector

USB DBC Class Definition, v0.9rc5 8/31/99

12

USB Device Bay Hub

Device Bay Controller

U
S

B
 D

ow
n

S
tr

ea
m

C
on

ne
ct

io
n

D
ev

ic
e

B
ay

 C
on

ne
ct

or

U
S

B
 D

ow
n

S
tr

ea
m

 C
on

ne
ct

io
n

to
 D

ev
ic

e
B

ay
 P

or
t

D
ev

ic
e

B
ay

 C
on

tr
ol

 S
ig

na
ls

In-valid
Configuration

F
ro

m
 U

ps
tr

ea
m

 R
oo

t
C

on
tr

ol
le

r

Added USB Hub

U
S

B

Figure 2-3. Example of an Invalid Remote Device Bay Architecture Showing Relationships Between
USB Hub, DBC, and Device Bay Connector

USB DBC Class Definition, v0.9rc5 8/31/99

13

2.2 Hub and DBC Power Distribution and Power Switching
This section specifies the rules for power distribution to the hub and permanently attached DBC function, as well as
the rules for port power switching on the hub.

2.2.1 Power Distribution
The DBC function is permanently attached to a hub.
• The hub must be a “hybrid” powered device (as defined in sections 7.2.1.2 and 7.2.1.5 of the v1.1 USB

Specification) or a self-powered device. A hybrid-powered hub has the advantage that communication from the
host is possible even if the remote Device Bay power supply is off and is strongly recommended.

• The DBC function can be bus-powered or self-powered. Note that if the DBC is bus-powered, it must be able to
operate with 500uA of current when the hub is suspended.

The DBC controls Vid to the device bay and may optionally control Vop.

2.2.2 Power Switching
It is recommended that the hub have port power switching for its downstream ports. An implementation may use
individual port power switching or ganged power switching. For more information, see section 11.7 of the v1.1 USB
Specification. Note that a hub port must be powered on in order to perform connect detection from the downstream
direction.
• It is recommended that individual port power switching be used on a hub with ports that are attached to a DBC

and one or more bays. The power-switching mode of a port is specified in the wHubCharacteristics field of the
Hub Descriptor (for more information, see section 11.11.2.1 of the v1.1 USB Specification).

• If gang-switching is used, the PortPwrCtrlMask field of the Hub Descriptor must be used to mask all the ports
attached to a DBC or bay from the effects of a gang-mode power control request.

Note that implementing either of these power switching modes on the hub enables one or more of the hub ports to
provide a walk-up connector for a hot-plugged low-power or self-powered USB device.

Note to reviewers: a section will be added to the Device Bay Specification that defines a power descriptor for USB
devices that are designed to be inserted into Device Bay bays.

2.2.3 Bay Subsystem Wakeup Events
For suspend, resume, and remote wakeup, the DBC is no different than any other USB device and must comply with
the USB Core Specification requirements.

When enabled, the events at the bay subsystem that can be detected by the DBC and that cause the DBC to generate a
USB wakeup event (that is, to drive resume signaling on its upstream USB port):
• When the DBC detects a device insertion event at the bay subsystem it controls, it must drive resume signaling on

its upstream port.
• When the DBC detects a device removal request it must drive resume signaling on its upstream port when enabled

via the REMOVE_REQUEST_ENABLE feature selector.
• When the DBC detects a device removal event at the bay subsystem it controls, it must drive resume signaling on

its upstream port.

USB resume is enabled by the remote wakeup feature of the device status word. See chapter 9 of the USB 1.1
specification for additional information.

USB DBC Class Definition, v0.9rc5 8/31/99

14

3 Functional Characteristics
Software running on the Host System to which the DBC is attached, uses the default control pipe to read and write
Device Bay subsystem capabilities, status, and control information.

An interrupt pipe is required to enable the Device Bay subsystem to deliver information to the host about
asynchronous, infrequent device insertion and removal request events (and, optionally, a vendor-specific notification).

3.1 Notification Through the Interrupt Pipe
Software running on the host is notified of an insertion and removal event when it receives a bit-map through the IN
interrupt pipe. The only information contained in the event notification bit-map is an indication of the bay where the
event occurred. One bit is set in the bit-map for each bay that has a pending interrupt:

If bit 0 is set, the event is a vendor specific event
If bit 1 is set, the event occurred at bay number 1
If bit 2 is set, the event occurred at bay number 2
If bit 3 is set, the event occurred at bay number 3
and so on.

Note: Please refer to section 5.2 for additional information about vendor specific events.

The DBC must assert the notification until the host acknowledges it. The host software acknowledges the notification
by using the appropriate Clear Feature request.
• If host software determines the cause of the notification was a device status change, then the bRequest field of the

Clear Feature must be set to C_DEVICE_STATUS_CHANGE.
• If host software determines the cause of the notification was the pressing of the removal request button, then the

bRequest field of the Clear Feature request must be set to C_REMOVE_REQUEST

Host software gets the information it needs to determine the cause of the notification by using a Get Status request with
the bRequest field set to BAY_STATUS. The wIndex field of the Get Status request is set to the number of the bay that
was indicated in the bit-map on the Interrupt pipe. Bays in a Device Bay subsystem are numbered from 1 to n.

USB DBC Class Definition, v0.9rc5 8/31/99

15

3.2 1394 Link Requirements
A USB-based DBC must have a 1394 Link/PHY interface and simple Link controller functionality (the relationship
between the USB-based DBC and its associated PHY is shown in the architecture diagram shown in Figure 2-1.
More specifically, a USB-based DBC must
• Provide Link layer services; that is, handle the request, indication, response, and confirmation service primitives

described in section 3.6.1 of the IEEE Std 1394-1995 specification.
• Provide 1394 CSR space and Configuration ROM.

For more information about the minimal requirements see section 6 of this specification.

USB DBC Class Definition, v0.9rc5 8/31/99

16

4 Descriptors
This section describes the standard and class-specific USB descriptors for the Device Bay Controller class.

4.1 Device Descriptor

4.1.1 Class-Specific Device Descriptor
The class-specific device descriptors for a DBC Class device are:
• Subsystem Descriptor
• Bay Descriptor

The Subsystem Descriptor and Bay Descriptor must be returned after the Interface Descriptor and before the Endpoint
Descriptors for the DBC device.

Example:

1. Config_Descriptor
Interface_descriptor

Subsystem_descriptor (class)
Bay1_descriptor
Bay2_descriptor
…
Bayn_descriptor

Endpoint_descriptor

4.1.1.1 Subsystem Descriptor
The Subsystem Descriptor contains:
• The number of bays in the subsystem.
• Whether or not any bays in the subsystem implement a physical security lock.
• The unique identifier of the 1394 PHY for which the DBC is providing 1394 Link services.
• The power capabilities of the subsystem.
• The USB DBC Class specification version to which the subsystem complies.
• The Device Debounce state timeout value
• Whether VOP switching support is provided for one or more bays

Table 4-1. Subsystem Descriptor

Offset Field Size Value Description
0 bLength 1 Number Size of this descriptor, in bytes (must be at

least 0x30).
1 bDescriptorType 1 Constant SUBSYSTEM descriptor type (must be 0x40).
2 bmAttributes 4 Bit Map Attributes of the Device Bay Subsystem

controlled by the DBC.
D 31…D12: Reserved, must be 0
D 11…D8: The amount of time that the
DBC waits in the Device Debounce state
before setting the DEVSTSCHG bit and
transitioning to the Device Inserted
state. The value in this field represents the
de-bounce time in 0.5 second
increments. A value of 0000b represents a
debounce time of 0.5 seconds. A value of
1111b represents a debounce time of 8.0
seconds.
D5: VOP switching support.
 0 = No VOP switching support is

USB DBC Class Definition, v0.9rc5 8/31/99

17

 provided in this subsystem.
 1 = VOP switching support is
 provided in this subsystem.
D 4: Physical security lock support.
 0 = No physical security locks
 in this subsystem
 1 = At least one bay in the
 susbsystem has a
 physical security lock.
D 3..0: The number of bays in the
 Subsystem.

6 dw1394LinkGUID 8 Number Contains the 64-bit GUID (in big endian
format) of the 1394 PHY for which the DBC
is providing Link services.

14 dw3_3ContinuousPower 4 Number Total amount of continuous power, at 3.3V,
available to the susbsystem. Measured in
milliwatts. For a definition of the continuous
power measurement, see the Device Bay
Specification.

18 dw3_3PeakPower 4 Number Total amount of peak power, at 3.3V,
available to the subsystem. Measured in
milliwatts. For a definition of the peak power
measurement, see the Device Bay
Specification.

22 dw5_0ContinuousPower 4 Number Total amount of continuous power, at 5.0V,
available to the subsystem. Measured in
milliwatts.

26 dw5_0PeakPower 4 Number Total amount of peak power, at 5.0V,
available to the subsystem. Measured in
milliwatts.

30 dw12_0ContinuousPower 4 Number Total amount of continuous power, at 12.0V,
available to the subsystem. Measured in
milliwatts.

34 dw12_0PeakPower 4 Number Total amount of peak power, at 12.0V,
available to the subsystem. Measured in
milliwatts.

38 dwaggregatePower 4 Number The total aggregate power available to the
subsystem. Measured in Watts. For a
definition of total aggregate power, see the
Device Bay specification.

42 dwthermalDissipation 4 Number The total amount of heat that can be removed
from the subsystem. Measured in Watts.

46 bcdSpecificationRelease 2 BCD The USB DBC Class specification release to
which the subsystem complies (assigned by
vendor).

4.1.1.2 Bay Descriptor
There is one Bay Descriptor for each bay in the subsystem.

A Bay Descriptor contains
• A unique identifier for the bay within the subsystem (1, 2, 3, and so on). See illustration below.
• The 1394 port to which the bay is connected (see illustration below).
• The USB hub port to which the bay is connected (see illustration below).
• The form factor of the bay

Table 4-2. Bay Descriptor

Offset Field Size Value Description
0 bLength 1 Number Size of this descriptor, in bytes (must

be 0x6).
1 bDescriptorType 1 Constant BAY descriptor type (must be 0x41).
2 bBayNumber 1 Byte The unique identifier for the bay

within the susbsystem (1, 2, 3, and so
on).

USB DBC Class Definition, v0.9rc5 8/31/99

18

3 bHubPortNumber 1 Byte Identifies the USB hub port to which
the bay is connected.

4 bPHYPortNumber 1 Byte Identifies the PHY port to which the
bay is connected.

5 bFormfactor 1 Bit Map Form factor of the bay:
 0x00=DB32
 0x01=DB20
 0x02=DB13
All other values reserved.

Figure 2-1 provides an illustration of an example bay subsystem configuration and how the Bay Descriptor fields are
used. The port assignments in the example arbitrarily chosen for use in the Bay Descriptors example below. For
example, referring to Figure 2-1, if Bay 1 is a DB32 form factor, then the Bay 1 Descriptor values would be
as follows:

Offset Field Value
0 bLength 0x06
1 bDescriptorType 0x41
2 bBayNumber 0x01
3 bHubPortNumber 0x03
4 bPHYPortNumber 0x01
5 bFormfactor 0x00

4.1.2 Standard Device Descriptor
The standard device descriptor for a DBC Class device must indicate that class information is to be found at the
interface level. Therefore, the bDeviceClass field of the standard device descriptor for a DBC Class device must
contain zero so that enumeration software looks down at the interface level to determine the Interface Class.

The bDeviceSubClass and bDeviceProtocol fields for a DBC Class device descriptor must be set to zero.

All other fields of the standard device descriptor must comply with the definitions in section 9.6.1 of the USB
Specification.

Table 4-3. Standard Device Descriptor

Offset Field Size Value Description
0 bLength 1 Number Size of this descriptor, in bytes (must

be 0x12).
1 bDescriptorType 1 Constant DEVICE descriptor type (must be

0x01).
2 bcdUSB 2 BCD Identifies the version of the USB

Specification that the DBC and its
descriptors are compliant with.

4 bDeviceClass 1 Class Must be 0x00 for a DBC Class
device.

5 bDeviceSubclass 1 Subclass Must be 0x00 for a DBC Class
device.

6 bDeviceProtocol 1 Protocol Must be 0x00 for a DBC Class
device.

7 bMaxPacketSize0 1 Number Maximum packet size for endpoint
zero (only 8, 16, 32, or 64 are valid).

8 idVendor 2 Number Vendor ID (assigned by USB).
10 idProduct 2 Number Product ID (assigned by vendor).
12 bcdDevice 2 BCD Device release number (assigned by

vendor).
14 iManufacturer 1 Index Index of string descriptor describing

manufacturer.
15 iProduct 1 Index Index of string descriptor describing

product.
16 iSerialNumber 1 Index Index of string describing the

device’s serial number.
17 bNumConfigurations 1 Number Number of possible configurations

(must be 0x01 for DBC Class device).

USB DBC Class Definition, v0.9rc5 8/31/99

19

USB DBC Class Definition, v0.9rc5 8/31/99

20

4.2 Configuration Descriptor

4.2.1 Class-Specific Configuration Descriptor
There is no class-specific configuration descriptor.

4.2.2 Standard Configuration Descriptor
A DBC Class device Configuration Descriptor is identical to the standard configuration descriptor defined in section
9.6.2 of the USB Specification.

Table 4-4. Standard Configuration Descriptor

Offset Field Size Value Description
0 bLength 1 Number Size of this descriptor, in bytes (must

be 0x09).
1 bDescriptorType 1 Constant CONFIGURATION descriptor type

(must be 0x02).
2 wTotalLength 2 Length The combined length of all

descriptors (configuration, interface,
endpoint, and class or vendor
specific) returned for this
configuration.

4 bNumInterfaces 1 Number Number of interfaces supported by
this configuration (must be 0x01 for
DBC Class device).

5 bConfigurationValue 1 Number Value to use as an argument for
SetConfiguration to select this
configuration.

6 iConfiguration 1 Index Index of string descriptor describing
this configuration.

7 bmAttributes 1 Bit Map D7: Bus Powered
D6: Self Powered
D5: Supports Wakeup
D4 – D0: Reserved
For a DBC Class device, can be set to
0x60 (self-powered and supports
wakeup) or 0xA0 (bus-powered and
supports wake-up).

8 maxPower 1 mA Maximum power consumption from
the bus when DBC is fully
operational (expressed in 2mA units).
This value cannot exceed 50
(100mA).

4.3 Interface Descriptor

4.3.1 Class-Specific Interface Descriptor
There is no class-specific interface descriptor.

4.3.2 Standard Interface Descriptor
A DBC Class device Interface Descriptor is identical to the standard interface descriptor defined in section 9.6.3 of the
USB Specification.

Table 4-5. Standard Interface Descriptor

Offset Field Size Value Description
0 bLength 1 Number Size of this descriptor, in bytes (must

be 0x09).

USB DBC Class Definition, v0.9rc5 8/31/99

21

1 bDescriptorType 1 Constant INTERFACE descriptor type (must
be 0x04).

2 bInterfaceNumber 1 Number Zero-based value that identifies the
index in the array of concurrent
interfaces supported by this
configuration (must always be 0x00
for DBC Class devices).

3 bAlternateSettings 1 Number Value used to select alternate settings
(must always be 0x00 for DBC Class
devices).

4 bNumEndPoints 1 Number Number of endpoints used by this
interface (must always be 0x01 for
DBC Class devices).

5 bInterfaceClass 1 Class Interface class code (0xFF or TBD
value assigned by USB).

6 bInterfaceSubClass 1 SubClass Subclass code (must always be 0x00
for DBC Class devices).

7 bInterfaceProtocol 1 Protocol Protocol code (must always be 0x00
for DBC Class devices).

8 iInterface 1 Index Index of string descriptor describing
this interface.

USB DBC Class Definition, v0.9rc5 8/31/99

22

4.4 Endpoint Descriptor

4.4.1 Class-Specific Endpoint Descriptor
There is no class-specific endpoint descriptor.

4.4.2 Standard Endpoint Descriptors

4.4.2.1 Control Endpoint Descriptor
Since endpoint 0 is used as the DBC control endpoint, there is no dedicated standard control endpoint descriptor.

4.4.2.2 Interrupt Endpoint Descriptor
A DBC Class device must have an interrupt endpoint.
The descriptor for this endpoint is identical to the standard endpoint descriptor defined in section 9.6.4 of the USB
Specification.

Table 4-6. Interrupt Endpoint Descriptor

Offset Field Size Value Description
0 bLength 1 Number Size of this descriptor, in bytes (must be

0x07).
1 bDescriptorType 1 Constant ENDPOINT descriptor type (must be

0x05).
2 bEndpointAddress 1 Endpoint D7: Direction (1=IN)

D6 – D4: Reserved
D3 – D0: Endpoint number
Must be 0x81 for a DBC Class device
(an IN endpoint with an endpoint
number of 1).

3 bmAttributes 1 Bit Map D7 – D2: Reserved
D1 – D0: Transfer type (Interrupt = 11b)
Must be 0x03 for a DBC Class device.

4 wmaxPacketSize 2 Number Maximum packet size this endpoint is
capable of sending. For a DBC Class
device, this value depends on the
number of bays controlled by the
device:
if 1 to 7 bays then 0x0001,
if 8 to 15 bays then 0x0002,
if 16 to 23 bays then 0x0003,
and so on.

6 binterval 1 Number Interval for polling endpoint for data
transfers (expressed in milliseconds).
For a DBC Class device, the value of
this field must be 32 (0x20).

USB DBC Class Definition, v0.9rc5 8/31/99

23

5 Requests

 This section specifies the requests that the host can send to the DBC. The requests are listed in the
following summary table:

Table 5-1. USB DBC Requests

Brequest Value Description
GET_STATUS 0 See Chapter 9 of the USB Specification and section 5.3.1 of this

specification.
CLEAR_FEATURE 1 See Chapter 9 of the USB Specification and sections 5.3.4.2 and 5.4.3 of

this specification.
Reserved for future use 2
SET_FEATURE 3 See Chapter 9 of the USB Specification and sections 5.3.4.1 and 5.4.3 of

this specification.
Reserved for future use 4
SET_ADDRESS 5 See Chapter 9 of the USB Specification.
GET_DESCRIPTOR 6 See Chapter 9 of the USB Specification.
SET_DESCRIPTOR 7 See Chapter 9 of the USB Specification.
GET_CONFIGURATION 8 See Chapter 9 of the USB Specification
SET_CONFIGURATION 9 See Chapter 9 of the USB Specification.
GET_INTERFACE 10 See Chapter 9 of the USB Specification.
SET_INTERFACE 11 See Chapter 9 of the USB Specification.
SYNCH_FRAME 12 See Chapter 9 of the USB Specification.
GET_PHY_REG 13 See section 5.3.2 of this specification.
SET_PHY_REG 14 See section 5.3.3 of this specification.

5.1 Standard Requests
The DBC Device Class supports the standard requests described in Chapter 9, “USB Device Framework,” of the USB
Specification, as shown in Table 5-1.

5.2 Vendor-Specific Requests
Examples of vendor-specific requests relevant to Device Bay subsystems are:
• Over-current reporting.
• Over-temperature reporting.
• Asset tracking.
• Security measures.

Vendor-specific requests may be implemented in at least two different ways:
• The interrupt pipe required of all USB-based DBC implementations must be used to notify the host software of a

vendor-specific request. Bit 0 of the bit-map sent from the device to the host is reserved for this: if bit 0 is set to 1,
the host software will recognize this as a vendor-specific request.

• A second interrupt pipe may be added to the USB-based DBC that is dedicated to vendor-specific requests, which
are handled as specified in the Chapter 9 of the USB Core Specification.

For more information, see section 3.1, “Notification through the Interrupt Pipe.”

5.3 Class-Specific Requests
This section specifies the class-specific requests for a DBC. If the DBC device gets an invalid request from the host,
the device behavior is undefined; an invalid request can be handled by the device in whatever way is convenient for the
developer. For example, it is not required to STALL the control pipe when an invalid request is received; the device
can simply ignore the invalid request.

USB DBC Class Definition, v0.9rc5 8/31/99

24

5.3.1 Get Bay Status
The Get Bay Status request returns the following information about a particular bay:
•
• Current state of the optional bay-mounted security lock.
• Current state of the bay (empty, device debounce, device enabled, device inserted, removal request pending, or

device removal allowed).
• Current state of the removal request button mounted on the bay.
• Whether or not a USB device is currently inserted in the bay.
• Whether or not a 1394 device is currently inserted in the bay.
• Whether or not the status of a device in the bay has changed.
• Whether or not the software controlled interlock is currently engaged.
• The state of the bay, as requested by the host.
• Whether or not the hardware device removal request interrupt is currently enabled.
• Whether or not the hardware device change event interrupt is currently enabled.
• Whether or not the hardware device removal event interrupt is currently enabled.

BmRequestType bRequest wValue wIndex wLength Data
10100001B GET_STATUS 0 Index of bay (1, 2,

3, and so on)
3 Bit-map that

indicates the
current state of
the bay

The format of the bit-map returned by the DBC in response to a Get Status request from the host with wValue set to
BAY_STATUS is shown in the following table.

Table 5-1. Bay Status Bit-map

Bits Description Comment
23-16 Reserved
15 Current state of the optional bay-mounted physical security

lock:
 0 = Physical security lock is either not
 implemented on this bay or it is
 Implemented and currently disengaged.
 1 = Physical security lock is engaged.

The host can only read this bit.

14-12 Current state of the bay:
 000 = Bay Empty
 001 = Device Inserted
 010 = Device Enabled
 011 = Removal Requested
 100 = Device Removal Allowed
 101 = Device De-bounce
All other values are reserved.

For more information about these
device states, see section 6.6.6 of the
Device Bay Specification. The host
can only read this bit.

11 Current state of the optional removal request button on the bay:
 0 = Removal request button is either not
 implemented on this bay or it is
 implemented and currently cleared (any
 presses of the button have been
 acknowledged by the host).
 1 = Removal request button has been
 pressed and not yet acknowledged by
 the host.

The host can read this bit and clear
this bit.

10 Current state of transitions on the device presence pins in the
bay.
 0 = Currently cleared (any transitions on
 either presence pin have been
 acknowledged by the host.
 1 = A transition has occurred on one or
 both of the presence pins and has not
 yet been acknowledged by the host.

The host can read this bit and clear
this bit.
For more information about the
device presence pins, 1394PRSN#
and USBPRSN#, see section 4.4.1.4
of the Device Bay Specification.

9 Current state of the 1394 device presence pin in the bay:
 0 = No 1394 device currently inserted in
 the bay.
 1 = A 1394 device is currently inserted in

The host can only read this bit.

USB DBC Class Definition, v0.9rc5 8/31/99

25

 the bay.
8 Current state of the USB device presence pin in the bay:

 0 = No USB device currently inserted in
 the bay.
 1 = A USB device is currently inserted in
 the bay.

The host can only read this bit.

7 Current state of the software-controlled interlock:.
 0 = Disengaged
 1 = Engaged

The host can use Set Feature and
Clear Feature requests to engage and
disengage the interlock. For more
information, see section 5.3.4.

6 - 4 Most recent bay state change request the DBC has received
from the host:
 000 = No op
 001 = Request was for Device Inserted state
 010 = Request was for Device Enabled state
 011 = Request was for Removal Requested
 100 = Request was for Device Removal
 Allowed

3 Current state of the removal request event interrupt enable:
 0 = Disabled
 1 = Enabled

The host can use Set Feature and
Clear Feature requests to enable and
disable this interrupt. For more
information, see section 5.3.4.

2 Current state of the device status change event interrupt enable:
 0 = Disabled
 1 = Enabled

The host can use Set Feature and
Clear Feature requests to enable and
disable this interrupt. For more
information, see section 5.3.4.

1 Current state of the device removal wakeup interrupt enable:
 0 = Disabled
 1 = Enabled

The host can use Set Feature and
Clear Feature requests to enable and
disable this interrupt. For more
information, see section 5.3.4.

0 Current state of the Vid control bit:
 0 = Turn off Vid power.
 1 = Turn on Vid power.

The host can use Set Feature and
Clear Feature requests to enable and
disable Vid power. For more
information, see section 5.3.4.

5.3.2 Get PHY Register
Host software uses this request to establish a consistent communication method between the Link and PHY.

The bmRequestType field value specifies a Class-type request directed to an interface, with a data transfer direction of
device to host.

The wIndex field is set to indicate the PHY register to read from.

The wLength field is always set to 1 because data is always read one byte at a time from a PHY register.

BmRequestType bRequest wValue wIndex wLength Data
10100001B GET_PHY_REG 0 The 4-bit

address of
the PHY
register to
read from.

1 Contains the
byte of data
read from
the PHY
register.

5.3.3 Set PHY Register
The host uses this request, along with the Get PHY Register request,

The bmRequestType field value specifies a Class-type request directed to an interface, with a data transfer direction of
host to device.

The wIndex field is set to indicate the PHY register to write to.

The wLength field is always set to 1, because a byte of data is always written to a PHY register.

USB DBC Class Definition, v0.9rc5 8/31/99

26

BmRequestType BRequest wValue wIndex wLength Data
00100001B SET_PHY_REG 0 The 4-bit

address of
the PHY
register to
write to.

1 Contains the
byte of data to
write to the PHY
register.

5.3.4 Feature Requests
The Get Bay Status request (specified in section 5.3.1) enables the host to read all the information it needs from the
DBC. Set Feature and Clear Feature requests enable the host to write information to the DBC.

5.3.4.1 Set Feature
The Set Feature requests available to host software are specified in this section. For a list of the feature selectors
(wValue field values) that can be used in a Set Feature request, see section 5.3.4.3.

BmRequestType bRequest wValue wIndex wLength Data
00100001B SET_FEATURE Feature

Selector
Index of
bay (1, 2, 3,
and so on)

Zero None

5.3.4.2 Clear Feature
The Clear Feature requests available to host software are specified in this section. For a list of the feature selectors
(wValue field values) that can be used in a Clear Feature request, see section 5.3.4.3.

BmRequestType BRequest wValue wIndex Wlength Data
00100001B CLEAR_FEATURE Feature

Selector
Index of bay
(1, 2, 3, and
so on)

Zero None

5.3.4.3 Feature Selector Values
The valid values for the wValue field in a Set Feature or Clear Feature request are listed in the following table.

Table 5-2. wValue Values for Set Feature

Feature Selector Recipient Value Set/Clear Description

DEVICE_STATUS_CHANGE_ENABLE Interface 0 Set/Clear On the specified
bay, enables a
notification due to
a device status
change event (for
more information,
see section 6.6.5
of the Device Bay
Specification).

USB DBC Class Definition, v0.9rc5 8/31/99

27

ENABLE_VID_POWER Interface 1 Set/Clear On the specified
bay, enables the
Vid rail for the
bay (for more
information, see
section 6.6.5 of
the Device Bay
Specification).

LOCK_CTL Interface 2 Set/Clear On the specified
bay, engages the
software
controlled
interlock
mechanism for the
bay (for more
information, see
section 6.6.5 of
the Device Bay
Specification).

REMOVAL_EVENT_WAKE_ENABLE Interface 3 Set/Clear On the specified
bay, enables a
notification due to
a removal event in
the bay (for more
information, see
section 6.6.5 of
the Device Bay
Specification).

REMOVE_REQUEST_ENABLE Interface 4 Set/Clear On the specified
bay, enables a
notification due to
a hardware
removal request.
For more
information, see
section 6.6.5 of
the Device Bay
specification.

REQUEST_DEVICE_INSERTED_STATE Interface 5 Set Request to change
bay state to device
inserted.

REQUEST_DEVICE_ENABLED_STATE Interface 6 Set Request to change
the bay state to
device enabled.

REQUEST_REMOVAL_REQUESTED_STATE Interface 7 Set Request to change
the bay state to
removal requested.

REQUEST_REMOVAL_ALLOWED_STATE Interface 8 Set Request to change
the bay state to
removal allowed.

USB DBC Class Definition, v0.9rc5 8/31/99

28

C_DEVICE_STATUS_CHANGE Interface 9 Clear On the specified
bay,
acknowledges the
notification that
indicates the
device status has
changed (for more
information, see
section 6.6.4 of
the Device Bay
Specification).

C_REMOVE_REQUEST Interface 10 Clear On the specified
bay,
acknowledges the
notification that
indicates that the
removal request
button has been
pressed (for more
information, see
section 6.6.4 of
the Device Bay
Specification).

ENABLE_VOP_POWER Interface 11 Set/Clear On the specified
bay, enables the
Vop rail for the
bay (for more
information, see
section 6.6.5 of
the Device Bay
Specification).

6 Appendix (Normative)
This normative appendix describes the minimal DBC Link controller, CSR space, and Configuration ROM
requirements. A USB-based DBC must
• Provide Link layer services; that is, handle the request, indication, response, and confirmation service primitives

described in section 3.6.1 of the IEEE Std 1394-1995 specification.
• Provide 1394 CSR space and Configuration ROM.

6.1 Reporting PHY Interrupt Conditions
A minimal DBC is not required to report phy interrupt conditions.

6.2 Providing Link Layer Services
A USB-based DBC must handle the request, indication, response, and confirmation service primitives described in
section 3.6.1 of the IEEE Std 1394-1995 specification. Section 7 of this specification shows one way to implement the
minimal set of services that need to be provided by a USB-based DBC.

6.3 Providing 1394 CSR Space and Configuration ROM
The DBC must implement a minimal amount of control status register (CSR) space and Configuration ROM space to
be a 1394 transaction-capable node. This section specifies the CSR space and Configuration ROM space that must be
implemented.

USB DBC Class Definition, v0.9rc5 8/31/99

29

6.3.1 CSR Space
The CSR core registers that must be implemented in the DBC for the DBC to function as a transaction-capable node
are listed in Table 6-1. The base address of the register space is FFFF F000 000016. The registers are listed by the byte
offset from the base address.

Table 6-1. CSR Core Registers

Offset Register name Description
000016 STATE_CLEAR Sets state and control information. For more information, see section

8.3.2.2.1 of the IEEE Std 1394-1995 specification.
• The unit_depend field is not required for the DBC.
• The lost bit must be implemented in the DBC. In a cable

environment, the lost bit is not affected by a bus reset, but is set to
“1” during bus reset if a power reset or transition to the dead state
occurs (as defined in the CSR Architecture).

• The dreq bit must be implemented in the DBC. The DBC is a slave
device on the 1394 bus and will not originate 1394 transactions,
which means the dreq bit must be set to “1.” The dreq bit is
unaffected by a bus reset.

• In the bus_depend field the DBC:
 The only bit in the bus_depend field implemented in the DBC is
 the gone bit.
 The DBC is not cable-powered so does not implement the linkoff
 bit. The linkoff bit is set to “0” in the DBC and must remain at
 zero.
 The DBC is not cycle-master capable and does not implement
 the cmstr bit. The cmstr bit is set to “0” in the DBC and must
 remain at zero.

000416 STATE_SET Sets STATE_CLEAR bits. For more information, see section 8.3.2.2.2 of
the IEEE Std 1394-1995 specification.

000816 NODE_IDS Specifies 16-bit node ID. For more information, see section 8.3.2.2.3 of
the IEEE Std 1394-1995 specification.
• The DBC must not be used in a backplane environment. The

behavior of the DBC in a backplane environment will not be
specified.

000C16 RESET_START Resets state for a node. For more information, see section 8.3.2.2.4 of the
IEEE Std 1394-1995 specification.

Note that
• The SPLIT_TIMEOUT register is not implemented in DBC Link controller implementations in which the Link

controller is not a requester on the 1394 bus. The definition of the SPLIT_TIMEOUT register in the ANSI/IEEE
Std 1212:1994 or ISO/IEC 13213:1994 specification states that only a requester must implement the
SPLIT_TIMEOUT register if a device is implementing split transactions. If a DBC Link controller implements
requester capability and split transaction capability, then this DBC Link controller implementation must
implement the SPLIT_TIMEOUT register in accordance with the ANSI/IEEE Std 1212:1994 or ISO/IEC
13213:1994 specification.

• The BUSY_TIMEOUT register is not implemented in a minimal DBC Link controller; otherwise, it is optional.
Because the BUSY_TIMEOUT register is not implemented, the DBC will not support retries if using a minimal
Link controller implementation.

6.3.2 Providing Configuration ROM
The DBC must implement a Configuration ROM using the general ROM format. This section describes the parts of the
general ROM format that the DBC implements.

The general ROM format used by the DBC is shown in the following figure:

info_length crc_length rom_crc_value

USB DBC Class Definition, v0.9rc5 8/31/99

30

(8) (8) (16)
bus_info_block
root_directory

unit_directories
root & unit leaves

vendor_dependent_information

The Configuration ROM must contain a bus_info_block, a root directory, and a unit directory.

Note that:
• Currently, no vendor_dependent_information is defined for the Configuration ROM of the DBC.
• The “root & unit leaves” information must consist of the Node_Unique_Id leaf required by the root directory

structure. The unit_directory must contain entries that identify the DBC to the software.
• The info_length field must have a value greater than 1 and must specify how many quadlets are contained in the

bus_info_block data structure.
• The crc_length field specifies how many quadlets are protected by the rom_crc_value. The minimum number for

crc_length is the size of the bus_info_block, while the maximum value for crc_length is 255, which allows for a
maximum Configuration ROM size of 1024 bytes.

• The rom_crc_value is calculated using the CRC-16 algorithm described in clause 8.1.5 of the CSR Architecture.

USB DBC Class Definition, v0.9rc5 8/31/99

31

For more information about the Bus_Info_Block, the Root_Directory, and the Unit_Directory, see the IEEE Std 1394-
1995 specification. Notes about these components of Configuration ROM space that are specific to the minimal DBC
Link controller are listed in Table 6-2.

Table 6-2. Notes on DBC Link Controller Configuration ROM Space Components

Configuration
ROM
Component

Notes for DBC Link Controller

Bus_Info_Block For a full description of the Bus_Info_Block, see the CSR Architecture specification.
In the DBC Configuration ROM space:
• The cmc bit must be zero.
• The isc bit must be zero.
• The bmc bit must be zero.
• The cyc_clk_acc field must be set to all ones.
• The max_rec field of the DBC must be set to 0001 (4 bytes); this is the only

value allowed in the DBC for the max_rec field.
Root_Directory For a full description of the Root_Directory, see the CSR Architecture specification.

The Configuration ROM for the DBC must implement the general ROM format and
must have a Root_Directory. The Root_Directory must contain the following entries:
Module_Vendor_Id, Node_Capabilities, Node_Unique_Id, and Unit_Directory.

The DBC shall implement the 64, fix, lst, spt, and drq bits.
• The 64, fix, and lst bits must be set to 1 in the DBC. These bits indicate that the

DBC uses a 64-bit fixed-addressing scheme and that the STATE_CLEAR.lost bit
is implemented.

• The DBC sets the spt bit to “0” to indicate that the DBC does not implement the
SPLIT_TIMEOUT register.

• The DBC must not initiate 1394 transactions and must set the drq bit to zero.

Unit_Directory For a full description of the Root_Directory, see the CSR Architecture specification.
The Unit_Directory must contain the minimum amount of information necessary to
identify the DBC to the software. The Unit_Spec_ID entry and Unit_SW_Version
entry must be in the Unit_Directory.
• The value to use for the DBC Unit _Spec ID is 0x00805F.
• The 24-bit value for unit sw version is 0x010000.

An example implementation of a DBC Configuration ROM is shown in Section 8.

USB DBC Class Definition, v0.9rc5 8/31/99

32

7 Appendix (Informative)
This section details the minimal link controller behavior required for the DBC. Section 7.8 lists additional features that
may be added to a DBC link controller implementation for a design that must go beyond the minimal requirements.

7.1 Minimal Link Controller Transaction Capability
The minimal USB-based DBC Link controller must be a transaction-capable 1394 node.
• The Link must participate in asynchronous transactions
• The Link does not need to recognize isochronous transfers.

Section 8.3.1.2 of the IEEE Std 1394-1995 specification lists the requirements for a transaction-capable node.
• The minimal Link controller is not required to implement the SPLIT_TIMEOUT register that is called out in

section 8.3.1.2 of the IEEE Std 1394-1995 specification.
• The minimal Link controller is not required to support split transactions. If split transactions are not supported the

minimal Link controller must be able to respond to read requests using concatenated subactions and must respond
to write requests using a unified response.

In addition to the registers listed in the IEEE Std 1394-1995 specification, the Link controller also must have a
Configuration ROM in the general ROM format (for more information, see section 6 of this specification).

7.2 1394 Packets
The PHY attached to the DBC Link controller must pass 1394 packets to the minimal Link controller in the DBC. A
minimal Link controller must recognize only two types of packets from the 1394 bus and must generate only one type
of packet to the 1394 bus.

7.2.1 Receiving Packets
The DBC Link controller must ignore a packet that contains a CRC error in the header_CRC. The header_CRC is the
only CRC that the DBC Link controller must check, since the minimal Link controller will never respond to a packet
with a data payload. The max_rec field of aDBC implementing a minimal link should be set to 0h, meaning the
maximum payloadfor an asynchronous block transaction is not specified since block transactions are not supported.
A minimal DBC Link controller must properly recognize and process packets with the transaction codes listed in Table
7-1.

Table 7-1. Packet Transaction Codes

Packet Transaction code
Write request for data quadlet 0h
Read request for data quadlet 4h

In addition to the two packet types, a minimal DBC link controller must also properly handle broadcast packets. If the
10-bit bus_ID is between 000 and 3FEh, and the physical_ID is set to 3Fh, then this is a broadcast to the bus encoded
in the bus_ID.
• If the bus_ID of the DBC matches the bus_ID of the packet, and if the tcode indicates that the packet is a write

request for the data quadlet, then the DBC will accept the packet.
• No acknowledge is returned in response to this type of broadcast.

If the 10-bit bus_ID is set to 3FFh and the physical_ID is set to 3Fh, then this is a broadcast to the local bus.
• If the tcode indicates that the packet is a write request for the data quadlet, then the DBC will accept

the packet.
• No acknowledge is returned in response to this type of broadcast.

A packet addressed to a minimal DBC link controller containing a tcode other than 0 or 4 will be acknowledged with
an ack_type_error response.

Ack_type_error indicates that a field in the request packet header was set to an unsupported or incorrect value, or that
an invalid transaction was attempted.

USB DBC Class Definition, v0.9rc5 8/31/99

33

7.2.2 Generating Packets
A minimal implementation of a DBC Link controller must be set to generate one type of packet and transaction code,
which is shown in Table 7-2.

Table 7-2. Transaction Code for Packet Generation

Packet Transaction code
Read response for data quadlet 6h

The read response packet is generated as a concatenated subaction to a read request.

7.3 Retry Code
A minimal DBC Link controller does not support retries; the BUSY_TIMEOUT register is not implemented. The rt
field in a read response for data quadlet packet must always be retry_X.

7.4 Retries
Retries are not supported in a minimal DBC Link controller; the BUSY_TIMEOUT register is not
implemented. A minimal DBC Link controller does not retry a response packet.

7.5 Response Codes
A minimal DBC Link controller must respond to requests using the response codes shown in Table 7-3.

Table 7-3. DBC Link Controller Response Codes

Response code Response name Comments
0h resp_complete The node has completed the command —

no errors.
6h resp_type_error A field in the request packet header was set to an

unsupported or incorrect value, or an invalid
transaction was tried (such as a write to a read-
only address).

7.6 Acknowledge Codes
A minimal DBC Link controller must respond to the packets it recognizes with an acknowledge packet. The ack_codes

used by a minimal DBC Link controller are listed in Table 7-4. Table 7-3. DBC Link Controller
AcknowledgeCodes

Acknowledgment
code

Acknowledgment
name

Comments

1h ack_complete The node has successfully accepted the
packet. This is sent when the DBC receives a
non-broadcast write request for data quadlet
(tcode = 0) to a valid, writable DBC address.

2h ack_pending This is sent in response to a read request for
data quadlet if the read targets a valid DBC
address. To be followed by a concatenated
response packet containing the data quadlet.

Eh ack_type_error A field in the request packet header was set to
an unsupported or incorrect value, or an
invalid transaction was tried. This is sent in
response to all requests other than requests
with tcode values of 0 and 4.

USB DBC Class Definition, v0.9rc5 8/31/99

34

7.7 Physical Interface
The first-generation DBC link controller must interface to a 400 Mbps 1394 PHY. Future generations of DBC link
controllers will need to interface to next-generation 1394 PHYs at future 1394 bus speeds (for example, 1394a PHYs,
and speeds of 800 Mbps or higher).

7.8 Additional Features
Previous sections detailed the minimum behavior required of the 1394 Link controller section of a DBC. However, not
all Link controller implementations can meet the established minimum behavior. If a particular link controller
implementation must add extra complexity, then it is the responsibility of the Link controller implementers to account
for the extra functionality required by their design, assuring that their design works properly on a 1394 bus.

Examples of additional features required in a non-minimal link controller are listed below. Many more possibilities
exist. However, listing all possible cases where a DBC link controller would add extra complexity to its design is
beyond the scope of this document.

• Split transactions If a DBC Link controller implementation can be a requestor on the 1394 bus and
uses split transactions, then the SPLIT_TIMEOUT register and extra logic to
support split transactions must be included the Link controller design.

• Retries If the Link controller implementation must issue retries, then the
BUSY_TIMEOUT register must be implemented along with the logic necessary
to handle the retries.

USB DBC Class Definition, v0.9rc5 8/31/99

35

8 Appendix (Informative)
This section shows an example implementation of a DBC Configuration ROM.

8.1 Example DBC Configuration ROM
The base address for this table is FFFF F000 000016. The location of the Bus_Info_Block and the Root_Directory are
fixed. The location of the Node_Unique_ID leaf and Unit_Directory are implementation-dependent, but their offsets
are specified in the root directory.

Offset
400 info_length crc_length rom_crc_value
404 3116 3316 3916 3416

Bus_Info_Block 408 Node_Options
40C node_vendor_id chip_id_hi
410 chip_id_lo
414 length CRC
418 0316 module_vendor_ID

Root_Directory 41C 0C16 node_capabilities
420 8D16 indirect_offset
424 D116 unit_directory_offset
434 length CRC

Unit_Directory 438 1216 unit_spec_ID
43C 1316 unit_sw_version
428 length CRC

Node_Unique_ID 42C node_vendor_id chip_id_hi
leaf 430 chip_id_lo

USB DBC Class Definition, v0.9rc5 8/31/99

36

9 Appendix (Informative)

This section shows an example of the logic that can be performed in the DBC when a hardware removal request button
is implemented on the Device Bay subsystem
The DBC logic, or rules, are shown in the following table. For more information, see section 6.6.6.1 of the Device Bay
Specification.

State Transition Cause
Any state to Bay Empty When both the 1394PRSN# and USBPRSN# pins are not asserted

low.
Bay Empty to Device Debounced When either the 1394PRSN# pin or the USBPRSN# pin is asserted

low.
Device Debounce to device inserted Debounce timer expired
Device Inserted to Device Enabled When SetFeature request is received with wValue set to

REQUEST_DEVICE_ENABLED_STATE
Any state (other than Bay Empty) to Removal
Requested

When removal request button is pushed.

Removal Requested to Removal Allowed When
Software-controlled interlock is disengaged
AND
Vid power is disabled
AND
Removal request interrupt is cleared.
AND
REQUEST_REMOVAL_ALLOWED_STATE

USB DBC Class Definition, v0.9rc5 8/31/99

37

10 Appendix (Informative)
This section shows the role of a USB-based DBC in the sequence of steps that carry out insertion of a device in a bay
and removal of a device from a bay.

10.1 USB-Based DBC Insertion Task Sequence Table
This scenario begins when a user inserts a USB, 1394, or combination USB/1394 device into a bay that is
controlled by a USB-based DBC. The scenario ends when the device or drivers are loaded for the device
and the device is powered-up, configured, and operational. This section parses the tasks carried out by the
Device Bay mechanical features, the DBC, and the OS to accomplish device insertion. The following Table
shows the role of the USB-based DBC in this insertion scenario.

USB DBC Class Definition, v0.9rc5 8/31/99

38

USB-Based DBC Insertion Task Sequence Table

Coordinating the
Bay

Mechanical
Features

DBC/USB Controller OS Coordinating the
UI

1-Device is
inserted into
the bay x.

2-A shelf
provides rough
alignment.

3-Device Bay
connector fine-
tunes the
alignment.

4-Device seats
into the
connector.

5-Connector
presence pin(s)
asserted.

6-Sets
1394PRSN_STS, bit
9, or USBPRSN_STS,
bit 8, in the Bay
status bitmap (if
compound device,
sets both bits).

7 – Enters Device
Debounce state and
sets BAY_ST, bits
14-12, in the Bay
status bitmap to
101.

8 – If present,
the hardware bay
status indicator
is set to
indicate Device
Debounce.

9-After Debounce
timer has expired,
sets DEVSTSCHG,
bit 10, in the Bay
status bitmap..

10- Sets BAY_ST,
bits 14-12, in the
Bay status bitmap
to 001b.

11-If DEVSTSCH_EN
is set, see bit 2
of the Bay status
bitmap, an
interrupt is
generated internal
to the DBC.

12-A USB INTERRUPT
TRANSACTION occurs
between the DBC
Class Driver and
the USB DBC
controller.

USB DBC Class Definition, v0.9rc5 8/31/99

39

USB-Based DBC Insertion Task Sequence Table

Coordinating the
Bay

Mechanical
Features

DBC/USB Controller OS Coordinating the
UI

13-Sends a
GET_STATUS request
and determines the
cause of the
interrupt by
detecting that
DEVSTSCHG bit is
asserted in the
Bay status bitmap.

14-Bay status
indicator set to
indicate Device
Inserted State.

15-Sends
CLEAR_FEATURE_C_DE
VICE_STATUS_CHANGE
.

16 – Clears
DEVSTSCHG, bit 10,
in the Bay status
bitmap

17-Sends a feature
request,
SET_FEATURE_LOCK_C
TL to engage the
software-
controlled
interlock and
physically lock
the device into
place.

18-Engages the
software-controlled
interlock and sets
LOCK_CTL, bit 7, in
the Bay status
bitmap.

19-Software-
controlled
interlocks are
engaged.

20-Determines that
1.5W is available
to turn on the Vid
power rail in bay
x.

21-Sends Feature
Request,
SET_FEATURE_ENABLE
_VID_POWER.

22-Turns on Vid
power rails to bay
x, and sets
PWR_CTL, bit 0, in
the Bay status
bitmap.

23-Vid power
flows to the

USB DBC Class Definition, v0.9rc5 8/31/99

40

USB-Based DBC Insertion Task Sequence Table

Coordinating the
Bay

Mechanical
Features

DBC/USB Controller OS Coordinating the
UI

device in bay x

24-Device appears
on native bus;
native bus
enumerates the
device.

25-Identifies
device.

26-Determines that
adequate power
exists and enables
Vop.

27-If bay supports
VOP switching,
sends SET_FEATURE_
_ENABLE_VOP_POWER

28-Sends
SET_FEATURE_REQUES
T_DEVICE_ENABLED_S
TATE.

29-Sets BAY_ST,
bits 14-12, in the
Bay status bitmap
to 010b.

30a-If present,
the hardware bay
status indicator
is set to
indicate Device
Enabled.

30b-If active,
the UI bay status
indicator is set
to indicate
Device Enabled.

31-User sees the
device is ready.

USB DBC Class Definition, v0.9rc5 8/31/99

41

10.2 Button-Initiated Removal Request, USB-Based DBC
This section parses the tasks carried out by the Device Bay mechanical features, the DBC, the USB root
hub, and the OS to accomplish device removal after the user presses the removal request button at bay x.
Note that the removal request button is an option on a Device Bay. If there is no removal request button on
a bay, the user must initiate a device removal request from UI displayed by the OS (for more information
about this, see the next topic).

USB DBC Class Definition, v0.9rc5 8/31/99

42

USB-Based DBC Button Initiated Removal Request Task Sequence

Coordinating the
Bay

Mechanical
Features

DBC/USB Root Hub OS Coordinating the
UI

1-User presses
removal request
button

2-Removal
Request signal
is asserted.

3-Sets
REMREQ_STS, bit
11, in the Bay
status bitmap.

4-Bay state
BAY_ST, bits 14-
12, in the Bay
status bitmap
change to 011b
to indicate a
removal
requested.

5a-If present,
the hardware bay
status indicator
is set to
indicate Device
Removal
Requested.

5b-If active,
the UI bay
status indicator
is set to
indicate Device
Removal
Requested.

6-If Removal
Request
interrupts are
enabled, see bit
3 of the Bay
status bitmap,
an interrupt is
generated
internal to the
DBC.

7-A USB
INTERRUPT
TRANSACTION
occurs between
the DBC class
driver and the
USB DBC
controller.

8-The USB root
hub controller
generates a
system
interrupt.

9-Sends a
GET_STATUS
request and
determines the
cause of the
interrupt by
detecting that
the REMREQ_STS
bit is asserted
in Bay status
bitmap.

USB DBC Class Definition, v0.9rc5 8/31/99

43

USB-Based DBC Button Initiated Removal Request Task Sequence

Coordinating the
Bay

Mechanical
Features

DBC/USB Root Hub OS Coordinating the
UI

10-Sends a
Feature Request,
CLEAR_FEATURE_C_
REMOVE_REQUEST
to the DBC via
the USB root hub
controller to
clear the
REMREQ_STS, bit
11, in the Bay
status bitmap.

11-If
“appropriate,”
place device in
a logical “off”
state using
native bus
driver (for
example, notify
apps, etc.).

12-Device stops
using Vop.

13-If the bay
supports Vop
switching as
indicated by bit
5 in the
Subsystem
descriptor,
sends a Feature
Request,
CLEAR_FEATURE_EN
ABLE_VOP_POWER.

14-If possible,
unloads any
appropriate
device drivers.

15-Sends an
Feature Request,
CLEAR_FEATURE_EN
ABLE_VID_POWEER,
to the DBC via
the USB root hub
controller to
disable Vid
power.

16-Disables the
Vid power rail
in bay x, and
clears PWR_CTL,
bit 0, in the
Bay status
bitmap.

17-Vid is
removed from the
device.

18-Waits the
time interval
specified by the

USB DBC Class Definition, v0.9rc5 8/31/99

44

USB-Based DBC Button Initiated Removal Request Task Sequence

Coordinating the
Bay

Mechanical
Features

DBC/USB Root Hub OS Coordinating the
UI

device.

19-Sends a
Feature Request,
CLEAR_FEATURE_LO
CK_CTL, to the
DBC via the USB
root hub
controller to
unlock the
software-
controlled
interlock.

20-Disengages
the software-
controlled
interlock and
clears LOCK_CTL,
bit 7, in the
Bay status
bitmap.

21-Software-
controlled
interlocks are
disengaged.

22-If any bays
have a security
lock as
indicated by bit
4 in the
Subsystem
descriptor;
sends a
GET_STATUS
request to
determine the
state of SL_STS,
bit 15, in the
Bay status
bitmap. If bit
not set, skips
ahead to step
26.

23-Prompts user
that before
device can be
removed, user
must disengage
security lock.

24-User responds
to prompt.

25-Determines if
security lock is
disengaged;
sends a
GET_STATUS
request to
determine if
SL_STS, bit 15,
in the Bay
status bitmap is
still set. If

USB DBC Class Definition, v0.9rc5 8/31/99

45

USB-Based DBC Button Initiated Removal Request Task Sequence

Coordinating the
Bay

Mechanical
Features

DBC/USB Root Hub OS Coordinating the
UI

bit is set, go
back to step 23.

26-Sends a
Feature Request,
SET_FEATURE_REQU
EST_REMOVAL_ALLO
WED, to the DBC
via the USB root
hub controller
to request bay
state indicator
change to Device
Removal Allowed
(this
transaction
writes 100b into
the BAY_STREQ,
bits 6-4, of the
Bay status
bitmap).

27-Sets the
BAY_ST, bits 14-
12, in the Bay
status bitmap to
100b to indicate
the Removal
Allowed state.

28a-If present,
the hardware bay
status indicator
is set to
indicate Device
Removal Allowed.

28b-If active,
the UI bay
status indicator
is set to
indicate Device
Removal Allowed.

29-User realizes
it is safe to
remove the
device.

30-If present,
eject mechanism
ejects device
for user

31-User removes
device.

32-Connector
presence pin(s)
deasserted.

33-Clears
1394PRSN_STS,
bit 9, or
USBPRSN_STS, bit
8, in the Bay
status bitmap
(if compound
device, clears
both bits).

34-If
REMOVAL_WAKE_EVE
NT_ENABLE is set
(see bit 1 in

USB DBC Class Definition, v0.9rc5 8/31/99

46

USB-Based DBC Button Initiated Removal Request Task Sequence

Coordinating the
Bay

Mechanical
Features

DBC/USB Root Hub OS Coordinating the
UI

the Bay status
bitmap)
DEVSTSCHG, bit
10, in the Bay
status bitmap is
set.

35-Sets the
BAY_ST, bits 14-
12, in the Bay
status bitmap to
000b to indicate
Bay Empty.

36-If Device
Status Change
and Removal Wake
interrupts are
enabled, see
bits 2 and 1 of
the Bay status
bitmap, an
interrupt is
generated
internal to the
DBC.

37-An USB
INTERRUPT
TRANSACTION
occurs between
the DBC and the
USB root hub
controller.

38-The USB root
hub controller
generates a
system
interrupt.

39-Receives the
system
interrupt.

40-Sends a
GET_STATUS to
each bay to
determines the
bay location of
the interrupt by
reading the
DEVSTSCHG bit in
each Bay status
bitmap until it
finds one that
is set.

41-Determines
the cause of the
interrupt by
determining both
the 1394PRSN_STS
and USBPRSN_STS
bits are
cleared, so
device must have

USB DBC Class Definition, v0.9rc5 8/31/99

47

USB-Based DBC Button Initiated Removal Request Task Sequence

Coordinating the
Bay

Mechanical
Features

DBC/USB Root Hub OS Coordinating the
UI

been removed.

42-Sends a
FEATURE_REQUEST,
CLEAR_FEATURE_C_
DEVICE_STATUS_CH
ANGE, to the DBC
via the USB root
hub controller
to clear the
“sticky”
DEVSTSCHNG, bit
10, in the Bay
status bitmap.

43a-If present,
the hardware bay
status indicator
is set to
indicate Bay
Empty.

43b-If active,
the UI bay
status indicator
is set to
indicate Bay
Empty.

44-User gets
closure on the
request.

USB DBC Class Definition, v0.9rc5 8/31/99

48

10.3 UI-Initiated Removal Request, USB-Based DBC
This section parses the tasks carried out by the Device Bay mechanical features, the DBC, the USB root
hub, and the OS to accomplish device removal after the user initiates a device removal request from the UI
displayed by the OS.

USB DBC Class Definition, v0.9rc5 8/31/99

49

USB-Based DBC UI Initiated Removal Request Task Sequence

Coordinating the
Bay

Mechanical
Features

DBC/USB Root Hub OS Coordinating the
UI

1-User initiates
a device removal
request.

2-Uses
information
returned by the
UI to determine
which bay the
user wants to
remove the
device from (bay
x), then sends a
Feature Request,
SET_FEATURE_REMO
VAL_REQUESTED_ST
ATE, to the DBC
via the USB root
hub controller
to set the bay
to the Removal
Requested state
(this
transaction
writes 011b to
BAY_STREQ, bits
6-4, in the Bay
Status bitmpa).

3-Sets BAY_ST,
bits 14-12, in
the Bay status
bitmap to 011b
to indicate
Removal
Requested.

4(a)-If present,
the hardware bay
status indicator
is set to
indicate Device
Removal
Requested.

4(b)-If hardware
bay status
indicator is not
present, the UI
bay status
indicator is set
to indicate
Device Removal
Requested.

5-User realizes
system has begun
process of
removing device
from bay x.

6-If
“appropriate”,
place device in
a logical “off”
state using
native bus
driver (for
example, notify
apps, etc.).

7-Device stops
using Vop.

USB DBC Class Definition, v0.9rc5 8/31/99

50

USB-Based DBC UI Initiated Removal Request Task Sequence

Coordinating the
Bay

Mechanical
Features

DBC/USB Root Hub OS Coordinating the
UI

8-If the bay
supports Vop
switching as
indicated by bit
5 in the
Subsystem
descriptor,
sends a Feature
Request,
CLEAR_FEATURE_EN
ABLE_VOP_POWER.

9-Unloads any
appropriate
device drivers.

10-Sends a
Feature Request,
CLEAR_FEATURE_EN
ABLE_VID_POWER,
to the DBC via
the USB root hub
controller to
turn off Vid
power in bay x.

11-Disables Vid
power rail in
bay x and clears
PWR_CTL, bit 0,
in the Bay
status bitmap

12-Vid is
removed from
device.

13-Waits the
time interval
specified by the
device.

14-Sends a
Feature Request,
CLEAR_FEATURE_LO
CK_CTL, to the
DBC via the USB
root hub
controller to
unlock the
software-
controlled
interlock.

15-Disables the
software-
controlled
interlock and
clears LOCK_CTL,
bit 7, in the
Bay status
bitmap.

16-Software-
controlled
interlocks are
disabled.

USB DBC Class Definition, v0.9rc5 8/31/99

51

USB-Based DBC UI Initiated Removal Request Task Sequence

Coordinating the
Bay

Mechanical
Features

DBC/USB Root Hub OS Coordinating the
UI

17-If any bays
have a security
lock as
indicated by bit
4 in the
Subsystem
descriptor;
sends a
GET_STATUS
request to
determine the
state of SL_STS,
bit 15, in the
Bay status
bitmap. If bit
not set, skips
ahead to step
21.

18-Prompts user
that before
device can be
removed, user
must disengage
security lock.

19-User responds
to prompt.

20- Determines
if security lock
is disengaged;
sends a
GET_STATUS
request to
determine if
SL_STS, bit 15,
in the Bay
status bitmap is
still set. If
bit is set, go
back to step 18.

21-Sends a
Feature Request,
SET_FEATURE_REQU
EST_REMOVAL_ALLO
WED_STATE, to
the DBC via the
USB root hub
controller to
change the bay
indicator state
to Device
Removal Allowed
(this sets
BAY_STREQ, bits
6-4, in the Bay
status bitmap to
100b.

22-Sets the
BAY_ST, bits 14-
12, in the Bay
status bitmap to
100b to indicate
Device Removal

USB DBC Class Definition, v0.9rc5 8/31/99

52

USB-Based DBC UI Initiated Removal Request Task Sequence

Coordinating the
Bay

Mechanical
Features

DBC/USB Root Hub OS Coordinating the
UI

Allowed.

23(a)-If
present, the
hardware bay
status indicator
is set to
indicate Device
Removal Allowed.

23(b)-If active,
the UI bay
status indicator
is set to
indicate Device
Removal Allowed.

24-Pops up a UI
to inform user
that it is safe
to remove the
device.

25-User realizes
device can be
removed.

26-User
realizes it is
safe to remove
the device.

27-If present,
eject mechanism
ejects device
for user

28-User removes
device.

29-Connector
presence pin(s)
deasserted.

30- Clears
1394PRSN_STS,
bit 9, or
USBPRSN_STS, bit
8, in the Bay
status bitmap
(if compound
device, clears
both bits).

31- If
REMOVAL_WAKE_EVE
NT_ENABLE is set
(see bit 1 of
the Bay status
bitmap), sets
DEVSTSCHG, bit
10, in the Bay
status bitmap.

32-Sets the
BAY_ST, bits 14-
12, in the Bay
status bitmap to
000b to indicate
Bay Empty.

33-If Device
Status Change
and Removal Wake
Enable
interrupts are

USB DBC Class Definition, v0.9rc5 8/31/99

53

USB-Based DBC UI Initiated Removal Request Task Sequence

Coordinating the
Bay

Mechanical
Features

DBC/USB Root Hub OS Coordinating the
UI

enabled, see bit
2 and 1 of the
Bay status
bitmap, an
interrupt is
generated
internal to the
DBC.

34-A USB
INTERRUPT
TRANSACTION
occurs between
the DBC and the
USB root hub
controller.

35-The USB root
hub controller
generates a
system
interrupt.

36-Sends a
GET_STATUS
request for each
bay to determine
the bay location
of the interrupt
by reading the
DEVSTSCHG bit in
each Bay status
bitmap until it
finds one that
is set.

37-Determines
the cause of the
interrupt by
determining both
the
1394PRSN_STS,
bit 9, and
USBPRSN_STS, bit
8, in the Bay
status bitmap
are cleared, so
device must have
been removed.

38-Sends a
Feature Request,
CLEAR_FEATURE_C_
DEVICE_STATUS_CH
ANGE, to the DBC
via the USB root
hub controller
to clear the
“sticky”
DEVSTSCHNG, bit
10, in the Bay
status bitmap.

39(a)-If
present, the
hardware bay
status indicator
is set to

39(b)-If active,
the UI bay
status indicator
is set to
indicate Bay

USB DBC Class Definition, v0.9rc5 8/31/99

54

USB-Based DBC UI Initiated Removal Request Task Sequence

Coordinating the
Bay

Mechanical
Features

DBC/USB Root Hub OS Coordinating the
UI

indicate Bay
Empty.

Empty.

440-User gets
closure on the
request.

USB DBC Class Definition, v0.9rc5 8/31/99

55

10.4 System Power On Task Sequence Tables
As the system powers up, the DBC resets and the PWR_EN and LOCK_EN control signals are negated.
Therefore, Vid will not be applied to any present devices and the software-controlled interlocks will not be
engaged. (Device retention mechanisms or optional security mechanisms may be engaged.) After the OS
has loaded, the OS will read the DBC Bay status bitmaps, to determine if devices are present, and proceed
through the appropriate previously defined device insertion sequence.
A platform provider may chose to support booting from a Device Bay device. In this case, the system
BIOS must have the ability to find and communicate with the DBC, identify possible boot devices via their
native bus, (1394 or USB), and load the OS from a Device Bay device. A possible sequence is described in
the following section.

10.4.1 System Power On Task Sequence Tables
This section parses the tasks carried out by the Device Bay mechanical features, the DBC, the USB root
hub, the system BIOS, and the OS when the system is powered up.

USB DBC Class Definition, v0.9rc5 8/31/99

56

Coordinating the
System and Bay

Mechanical
Features

DBC/USB Root Hub
Controller

OS / BIOS Coordinating the
UI

1-User initiates
a system power-
up.

2-LOCK_EN and
PWR_EN for all bays
are negated.
Interrupt enables
are negated.

3-Sets
1394PRSN_STS, bit
9, or USBPRSN, bit
8, in the Bay
status bitmap (if
compound device,
sets both bits) for
each bay with a
device present

[NOTE: No
interrupt is
generated from
devices already
present during the
power-up sequence.]

4-BIOS determines
the number of bays
in the system and
the bay types from
the DBC Subsystem
descriptor.

5-BIOS determines
the total Device
Bay sub-system
power and thermal
capabilities from
the DBC Subsystem
descriptor.

6-BIOS determines
the maximum number
of devices that
can be supported.

[Note: Possible
power budgeting
software agents
are not likely
active yet.]

7-BIOS determines
if the system OS
is supported via a
Device Bay device.
If not, once the
OS is loaded, it
will control the
Device Bay sub-
system. If yes,
continue.

8-BIOS sends a
GET_STATUS request
to the DBC to
determine the
state of
1394PRSN_STS, bit

USB DBC Class Definition, v0.9rc5 8/31/99

57

Coordinating the
System and Bay

Mechanical
Features

DBC/USB Root Hub
Controller

OS / BIOS Coordinating the
UI

9, and
USBPRSN_STS, bit
8, of the bays; if
one (or both) are
set in any bays, a
device(s) are
present.

9-BIOS sends a
Feature Request,
SET_FEATURE_LOCK_C
TL, to the DBC via
the USB root hub
controller to
physically lock
the first present
device into place.

10-Enables the
software-controlled
interlock and sets
LOCK_CTL, bit 7, in
the Bay status
bitmap.

11-Software-
controlled
interlocks are
enabled.

12-BIOS sends a
Feature Request,
SET_FEATURE_ENABLE
_VID_POWER, to the
DBC via the USB
root hub
controller to
enable Vid power to
the device.

13-Enables Vid power
rails to bay x and
sets PWR_CTL, bit
0, in the Bay
status bitmap.

14-Vid power
flows to the
device in bay x

15-Device appears
on native bus.
BIOS identifies
the device to
determine if it
can load the OS
from this device
type. If yes,
skip to #23.

16-Sends a Feature
Request,
CLEAR_FEATURE_ENAB
LE_VID_POWER, to
the DBC via the
USB root hub
controller to
disable Vid power
to bay x.

USB DBC Class Definition, v0.9rc5 8/31/99

58

Coordinating the
System and Bay

Mechanical
Features

DBC/USB Root Hub
Controller

OS / BIOS Coordinating the
UI

17-Disables Vid
power rail to bay x
and clears PWR_CTL,
bit 0, in the Bay
status bitmap.

18-Vid is
removed the
device.

19-Return to #9
and continue
looking for a
possible boot
device.

20-BIOS sends a
Feature Request,
SET_FEATURE_REQUES
T_DEVICE_ENABLED_S
TATE, to the DBC
via the USB root
hub controller to
request bay state
change to Device
Enabled (this
transaction writes
010b to BAY_STREQ,
bits 6-4, in the
Bay Status
bitmap).

21-Sets BAY_ST,
bits 14-12, in the
Bay status bitmap
to 010b to indicate
Device Enabled.

22-If present,
the hardware
status indicator
is set to
indicate device
enabled.

23-If the bay
supports Vop
switching as
indicated by bit 5
in the Subsystem
descriptor, sends
a Feature Request,
SET_FEATURE_ENABLE
_VOP_POWER. If not
skip to #25.

24-If subsystem Vop
power switching is
supported, enables
the subsystem Vop
power rails.

25-BIOS indicates
via the native bus
that the device
can enable Vop.

26-BIOS determine
if the OS is
present on the

USB DBC Class Definition, v0.9rc5 8/31/99

59

Coordinating the
System and Bay

Mechanical
Features

DBC/USB Root Hub
Controller

OS / BIOS Coordinating the
UI

device. If yes,
skip to #38.

27-BIOS indicates
via the native bus
that the device
must disable Vop.

28-If the bay
supports Vop
switching as
indicated by bit 5
in the Subsystem
descriptor, sends
a Feature Request,
CLEAR_FEATURE_ENAB
LE_VOP_POWER. If
not skip to #30.

29-If Vop power
switching is
supported by the
Subsystem, disables
the subsystem Vop
power rail.

30-Sends a Feature
Request,
CLEAR_FEATURE_ENAB
LE_VID_POWER, to
the DBC via the
USB root hub
controller to turn
off Vid power in
bay x.

31-Disables Vid
power rail in bay x
and clears PWR_CTL,
bit 0, in the Bay
status bitmap.

32-Vid is
removed from
device.

33-Waits the time
interval sp-
ecified by the
device.

34-Sends a Feature
Request,
SET_FEATURE_REQUES
T_DEVICE_INSERTED_
STATE, to the DBC
via the USB root
hub controller to
return the bay
indicator state to
Device is inserted
but not ready
(this sets
BAY_STREQ, bits 6-
4, in the Bay
status bitmap).

35-Sets the
BAY_ST, bits 14-12,
in the Bay status

USB DBC Class Definition, v0.9rc5 8/31/99

60

Coordinating the
System and Bay

Mechanical
Features

DBC/USB Root Hub
Controller

OS / BIOS Coordinating the
UI

bitmap to 001b to
indicate Device
Inserted.

36-If present,
the hardware bay
status indicator
is set to
indicate Device
Inserted.

37-Return to #9
and find the next
device.

38-OS is booted
and assumes
control of the
Device Bay sub-
system

USB DBC Class Definition, v0.9rc5 8/31/99

61

10.5 System Power Down Task Sequence Tables
This section parses the tasks carried out by the Device Bay mechanical features, the DBC, the USB root
hub, and the OS to power-down the system after the user initiates a shutdown request from the UI displayed
by the OS.

USB DBC Class Definition, v0.9rc5 8/31/99

62

Coordinating the
Bay

Mechanical
Features

DBC/USB Root Hub OS Coordinating the
UI

1-User initiates
a system
shutdown
request.

2-If
“appropriate,”
place device in
a logical “off”
state using
native bus
driver (for
example, notify
apps, etc.).

3- Device stops
using Vop.

4- If the bay
supports Vop
switching as
indicated by bit
5 in the
Subsystem
descriptor,
sends a Feature
Request,
CLEAR_FEATURE_EN
ABLE_VOP_POWER.
If not skip to
#6.

5-If subsystem
Vop power
switching is
supported,
disables the Vop
power rails.

6-Sends a
Feature Request,
CLEAR_FEATURE_EN
ABLE_VID_POWER,
to the DBC via
the USB root hub
controller to
disable Vid
power to each
bay.

7-Disables Vid
power rail to
all bays and
clears the
PWR_CTL bits,
bit 0, in the
Bay status
bitmaps.

8-Vid is removed
from devices.

9-Waits the
longest time
interval
specified by any
device.

10-If security
lock is

USB DBC Class Definition, v0.9rc5 8/31/99

63

Coordinating the
Bay

Mechanical
Features

DBC/USB Root Hub OS Coordinating the
UI

supported as
indicated by bit
4 in the DBC
Subsystem
descriptor,
sends a
GET_STATUS
request to each
bay to determine
the state of the
security locks
via SL_STS, bit
15, in the Bay
status bitmap.

11-If necessary,
a UI indicating
the bays that
are locked is
displayed.

12-Sends a
Feature Request,
SET_FEATURE_REQU
EST_REMOVAL_ALLO
WED_STATE, to
the DBC via the
USB root hub
controller to
change the bay
state for each
bay to Device
Removal Allowed,
(provided a
security lock is
not present and
engaged).

13- Sets the
BAY_ST, bits 14-
12, in the Bay
status bitmaps
to 100b to
indicate Device
Removal Allowed
for each bay, as
appropriate.

14-User realizes
devices can be
removed.

15-Shutdown
process
completes

16-System power-
down message is
displayed.

17-User may
remove power and
unlocked
devices.

USB DBC Class Definition, v0.9rc5 8/31/99

64

10.6 Button-Initiated Device Removal Scenario
This scenario begins when a user requests the removal of a device from a bay that is controlled by a USB-based DBC;
the user can make a device removal request either through software (for example, by a UI selection) or through
hardware (for example, by pressing a removal-request button). The scenario ends when the device has been physically
removed from the bay. The following flowchart, Figure 10-2, shows the role of the USB-based DBC in this device
removal scenario.
 the

USB DBC Class Definition, v0.9rc5 8/31/99

65

Figure 10-2. Device Removal Scenario Flow Chart

Device Removal Requested

Update Bay x status to
“Removal Requested”

Bay x Interrupt

Get Bay x Status

Set Bay x
Features

1. Disable Bay x Vid
power

1. Disable Bay x software
interlock

1. Update Bay x status to
“Removal Allowed”

Device Removed

Update Bay x status to
“Bay Empty”

Bay x Interrupt

Get Bay x Status

Set Bay x
Properties

